PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Overview

Impersonator

PyTorch implementation of our ICCV 2019 paper:

Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Please clone the newest codes.

[paper] [website] [Supplemental Material] [Dataset]

Update News

  • 10/05/2019, optimize the minimal requirements of GPU memory (at least 3.8GB available).

  • 10/24/2019, Imper-1.2.2, add the training document train.md.

  • 07/04/2020, Add the evaluation metrics on iPER dataset.

Getting Started

Python 3.6+, Pytorch 1.2, torchvision 0.4, cuda10.0, at least 3.8GB GPU memory and other requirements. All codes are tested on Linux Distributions (Ubutun 16.04 is recommended), and other platforms have not been tested yet.

Requirements

pip install -r requirements.txt
apt-get install ffmpeg

Installation

cd thirdparty/neural_renderer
python setup.py install

Download resources.

  1. Download pretrains.zip from OneDrive or BaiduPan and then move the pretrains.zip to the assets directory and unzip this file.
wget -O assets/pretrains.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNw4QyntCMsDKQjSg?e=L77Elv
  1. Download checkpoints.zip from OneDrive or BaiduPan and then unzip the checkpoints.zip and move them to outputs directory.
wget -O outputs/checkpoints.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNyoEh67Uu0LlxquA?e=dkOnhQ
  1. Download samples.zip from OneDrive or BaiduPan, and then unzip the samples.zip and move them to assets directory.
wget -O assets/samples.zip "https://1drv.ws/u/s\!AjjUqiJZsj8whLNz4BqnSgqrVwAXoQ?e=bC86db"

Running Demo

If you want to get the results of the demo shown on the webpage, you can run the following scripts. The results are saved in ./outputs/results/demos

  1. Demo of Motion Imitation

    python demo_imitator.py --gpu_ids 1
  2. Demo of Appearance Transfer

    python demo_swap.py --gpu_ids 1
  3. Demo of Novel View Synthesis

    python demo_view.py --gpu_ids 1

If you get the errors like RuntimeError: CUDA out of memory, please add the flag --batch_size 1, the minimal GPU memory is 3.8 GB.

Running custom examples (Details)

If you want to test other inputs (source image and reference images from yourself), here are some examples. Please replace the --ip YOUR_IP and --port YOUR_PORT for Visdom visualization.

  1. Motion Imitation

    • source image from iPER dataset
    python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
        --src_path      ./assets/src_imgs/imper_A_Pose/009_5_1_000.jpg    \
        --tgt_path      ./assets/samples/refs/iPER/024_8_2    \
        --bg_ks 13  --ft_ks 3 \
        --has_detector  --post_tune  \
        --save_res --ip YOUR_IP --port YOUR_PORT
    • source image from DeepFashion dataset
    python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
    --src_path      ./assets/src_imgs/fashion_woman/Sweaters-id_0000088807_4_full.jpg    \
    --tgt_path      ./assets/samples/refs/iPER/024_8_2    \
    --bg_ks 25  --ft_ks 3 \
    --has_detector  --post_tune  \
    --save_res --ip YOUR_IP --port YOUR_PORT
    • source image from Internet
    python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
        --src_path      ./assets/src_imgs/internet/men1_256.jpg    \
        --tgt_path      ./assets/samples/refs/iPER/024_8_2    \
        --bg_ks 7   --ft_ks 3 \
        --has_detector  --post_tune --front_warp \
        --save_res --ip YOUR_IP --port YOUR_PORT
  2. Appearance Transfer

    An example that source image from iPER and reference image from DeepFashion dataset.

    python run_swap.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/  \
        --src_path      ./assets/src_imgs/imper_A_Pose/024_8_2_0000.jpg    \
        --tgt_path      ./assets/src_imgs/fashion_man/Sweatshirts_Hoodies-id_0000680701_4_full.jpg    \
        --bg_ks 13  --ft_ks 3 \
        --has_detector  --post_tune  --front_warp --swap_part body  \
        --save_res --ip http://10.10.10.100 --port 31102
  3. Novel View Synthesis

    python run_view.py --gpu_ids 0 --model viewer --output_dir ./outputs/results/  \
    --src_path      ./assets/src_imgs/internet/men1_256.jpg    \
    --bg_ks 13  --ft_ks 3 \
    --has_detector  --post_tune --front_warp --bg_replace \
    --save_res --ip http://10.10.10.100 --port 31102

If you get the errors like RuntimeError: CUDA out of memory, please add the flag --batch_size 1, the minimal GPU memory is 3.8 GB.

The details of each running scripts are shown in runDetails.md.

Training from Scratch

  • The details of training iPER dataset from scratch are shown in train.md.

Evaluation

Run ./scripts/motion_imitation/evaluate.sh. The details of the evaluation on iPER dataset in his_evaluators.

Announcement

In our paper, the results of LPIPS reported in Table 1, are calculated by 1 – distance score; thereby, the larger is more similar between two images. The beginning intention of using 1 – distance score is that it is more accurate to meet the definition of Similarity in LPIPS.

However, most other papers use the original definition that LPIPS = distance score; therefore, to eliminate the ambiguity and make it consistent with others, we update the results in Table 1 with the original definition in the latest paper.

Citation

thunmbnail

@InProceedings{lwb2019,
    title={Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis},
    author={Wen Liu and Zhixin Piao, Min Jie, Wenhan Luo, Lin Ma and Shenghua Gao},
    booktitle={The IEEE International Conference on Computer Vision (ICCV)},
    year={2019}
}
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023