Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Overview

Tutoriais Públicos

GitHub last commit

Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Os tutoriais são publicados principalmente no Instagram e Linkedin da Trading com Dados. Este repositório serve, portanto, como um repositório de conteúdo para quem deseja de forma simples e direta encontrar os códigos produzidos para estes tutoriais.

Faremos o possível para manter esse repositório atualizado e contendo todos os tutoriais de conteúdo que desenvolvemos para nossas redes sociais. No entanto, não podemos garantir que a totalidade do conteúdo estará disponível aqui.

A maior parte dos códigos tem como nome aqui no GitHub o mesmo título do conteúdo no Instagram. Se o nome não for o mesmo, haverá pelo menos similaridade no que está descrito aqui com o título no Instagram.

A forma mais fácil de encontrar os códigos é através do ID presente depois do nome do código, que na verdade é apenas a data quando o código foi postado na seguinte sequência: ano, mês e dia, tudo junto. Exemplo: código criado no dia 03 de janeiro de 2022 possui como ID 20220103.

Atenção: Os códigos desenvolvidos para o canal do YouTube estão em um outro repositório. Para visitá-lo, clique aqui.

REPOSITÓRIO EM CONSTRUÇÃO

2021

  1. Como obter dados de ações em 5 simples passos (2021)
  2. Comece a programar em Python em 1 minuto (2021)
  3. Seu primeiro gráfico de candle no Python em 1 minuto (2021)
  4. Matriz de correlação entre ativos no Python em 5 minutos (2021)
  5. Visualize vários ativos no mesmo gráfico no Python em 5 minutos (2021)
  6. Compare a sua carteira com o IBOV em 5 minutos (20210824)
  7. Obtendo dados de dividendos (20210904)
  8. Matriz de risco vs. retorno no Python (20210919)
  9. Como obter dados de ações no Python (ou ETFs, FIIs, BDRs, cripto, dólar) (20210815)
  10. Compare sua carteira com o CDI (20210904)
  11. Como criar médias móveis simples no Python em 5 minutos (20211105)
  12. Visualize as 7 maiores criptos no Python em 5 minutos (20221108)
  13. Capture a cotação do mini-índice com tempo real no Python utilizando o Metatrader (20211110)
  14. Estudo de caso MGLU (20211208)
  15. Sua carteira bate o dólar? Faça a comparação no Python em 5 minutos (20211209)

2022

  1. Obtenha dados de criptomoedas com Python em menos de 5 minutos (20220103)
  2. Comparação entre carteiras (20220201)
  3. Tutorial sobre Quantstats (20220218)
  4. Descubra os investidores institucionais de um papel com o Python
  5. Você está comparando ativos da forma correta?
  6. Comece a programar em Python em 1 minuto (incluindo gráfico interativo de candle)
  7. Ciclos de Mercado: avaliando a sazonalidade anual do IBOV (20220330)
  8. Spread ações ON/PN: exemplo com PETR3 e PETR4 (20220406)
  9. Maiores crises econômicas pós guerras mundiais em diferentes escalas gráficas (20220423)
Owner
Trading com Dados
Edtech focused on teaching Quantitative Finance and Data Science for Financial Markets.
Trading com Dados
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021