Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

Related tags

Deep LearningTEQS
Overview

TEQS

Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has no QC knowledge and put through a five day crash course that puts them in the frame of mind necessary to learn via formal texts such as Nielsen and Chuang (which is the prize of our two day hackathon!)

TEQS Prerequisites

One of the beauties behind learning quantum computing is that on an elementary level, very few pre-requisites are required. At TEQS, the course is designed in a way where the only pre-requisites required are basic linear algebra and classical information processing. To ensure that everyone has those under their belts before attending the crash course, we made those three notebooks which we encourage everyone to read and solve the exercises.

  • Chapter 1 is on vectors and how they are used to represent the state of a qubit
  • Chapter 2 is on operators and how they are used to manipulate the state of a qubit
  • Chapter 3 is on Classical Information and Boolean Logic

Module Requirements

Lectures

Day 1:

Overview of mathematical prerequisites, brief introduction to quantum states and operators, and classical computing. Content available here.

Day 2:

Reduced quantum postulates from a quantum computing perspective and introduction to basic quantum circuits and simulators using Qiskit. Content available here.

Day 3:

The no-cloning theorem, quantum teleportation protocol, superdense coding, and BB84 cryptographic protocol. Content available here.

Day 4:

Quantum oracles, Deutsch's algorithm and how to construct a quantum circuit that implements them. Content available here.

Day 5:

IBM Quantum Fun Day! Introduction to RasQberry and Question and Answer Panel. Content available here.

Hackathon!

Welcome to the Eigensolvers Quantum School Hackathon! In the notebook found in this folder there are 4 problems covering all the material covered in the lectures. These problems have been designed for people coming from all different levels of experience in quantum computing. You will get a different certificate level based on the problems you completed:

  • First two: Beginner
  • First three: Intermediate
  • All four: Advanced

There are also prizes for the winners of the hackathon:

  • First Place: RasQberry - Premium
  • Second Place: RasQberry - All Inclusive
  • Third Place: RasQberry - Customizable DIY Kit
  • Fourth Place: Nielsen and Chuang

The ranking will be based on the weighted cost of the solutions for problem 3 and problem 4; as defined in the notebook.

To submit your solutions, fill out the form below, with the code that you write for each problem. https://forms.gle/KkA6gBbhrCZpWgnX8

The deadline for submission is Sunday (July 11th) 7pm Indian Standard Time. Remember, the ultimate goal is to have fun and learn some quantum computing while you're at it. All the best!

Owner
The Eigensolvers
The Eigensolvers
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022