Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

Overview

MASTER-PyTorch

PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This project is different from our original implementation that builds on the privacy codebase FastOCR of the company. You can also find Tensorflow reimplementation at MASTER-TF repository, and the performance is almost identical. (PS. Logo inspired by the Master Oogway in Kung Fu Panda)

Honors based on MASTER

Contents

Introduction

MASTER is a self-attention based scene text recognizer that (1) not only encodes the input-output attention, but also learns self-attention which encodes feature-feature and target-target relationships inside the encoder and decoder and (2) learns a more powerful and robust intermediate representation to spatial distortion and (3) owns a better training and evaluation efficiency. Overall architecture shown follows.

Requirements

  • python==3.6
  • torchvision==0.6.1
  • pandas==1.0.5
  • torch==1.5.1
  • numpy==1.16.4
  • tqdm==4.47.0
  • Distance==0.1.3
  • Pillow==7.2.0
pip install -r requirements.txt

Usage

Prepare Datasets

  1. Prepare the correct format of files as provided in data folder.
  2. Modify train_dataset and val_dataset args in config.json file, including txt_file, img_root, img_w, img_h.
  3. Modify keys.txt in utils/keys.txt file if needed according to the vocabulary of your dataset.
  4. Modify STRING_MAX_LEN in utils/label_util.py file if needed according to the text length of your dataset.

Distributed training with config files

Modify the configurations in configs/config.json and dist_train.sh files, then run:

bash dist_train.sh

The application will be launched via launch.py on a 4 GPU node with one process per GPU (recommend).

This is equivalent to

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c configs/config.json -d 1,2,3,4 --local_world_size 4

and is equivalent to specify indices of available GPUs by CUDA_VISIBLE_DEVICES instead of -d args

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c configs/config.json --local_world_size 4

Similarly, it can be launched with a single process that spans all 4 GPUs (if node has 4 available GPUs) using (don't recommend):

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=1 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c configs/config.json --local_world_size 1

Using Multiple Node

You can enable multi-node multi-GPU training by setting nnodes and node_rank args of the commandline line on every node. e.g., 2 nodes 4 gpus run as follows

Node 1, ip: 192.168.0.10, then run on node 1 as follows

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=2 --node_rank=0 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c configs/config.json --local_world_size 4  

Node 2, ip: 192.168.0.15, then run on node 2 as follows

CUDA_VISIBLE_DEVICES=2,4,6,7 python -m torch.distributed.launch --nnodes=2 --node_rank=1 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c configs/config.json --local_world_size 4  

Debug mode on one GPU/CPU training with config files

This option of training mode can debug code without distributed way. -dist must set to false to turn off distributed mode. -d specify which one gpu will be used.

python train.py -c configs/config.json -d 1 -dist false

Resuming from checkpoints

You can resume from a previously saved checkpoint by:

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -d 1,2,3,4 --local_world_size 4 --resume path/to/checkpoint

Finetune from checkpoints

You can finetune from a previously saved checkpoint by:

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -d 1,2,3,4 --local_world_size 4 --resume path/to/checkpoint --finetune true

Testing from checkpoints

You can predict from a previously saved checkpoint by:

python test.py --checkpoint path/to/checkpoint --img_folder path/to/img_folder \
               --width 160 --height 48 \
               --output_folder path/to/output_folder \
               --gpu 0 --batch_size 64

Note: width and height must be the same as the settings used during training.

Evaluation

Evaluate squence accuracy and edit distance accuracy:

python utils/calculate_metrics.py --predict-path predict_result.json --label-path label.txt

Note: label.txt: multi-line, every line containing {ImageFile:<ImageFile>, Label:<TextLabel>}

Customization

Checkpoints

You can specify the name of the training session in config.json files:

"name": "MASTER_Default",
"run_id": "example"

The checkpoints will be saved in save_dir/name/run_id_timestamp/checkpoint_epoch_n, with timestamp in mmdd_HHMMSS format.

A copy of config.json file will be saved in the same folder.

Note: checkpoints contain:

{
  'arch': arch,
  'epoch': epoch,
  'model_state_dict': self.model.state_dict(),
  'optimizer': self.optimizer.state_dict(),
  'monitor_best': self.monitor_best,
  'config': self.config
}

Tensorboard Visualization

This project supports Tensorboard visualization by using either torch.utils.tensorboard or TensorboardX.

  1. Install

    If you are using pytorch 1.1 or higher, install tensorboard by 'pip install tensorboard>=1.14.0'.

    Otherwise, you should install tensorboardx. Follow installation guide in TensorboardX.

  2. Run training

    Make sure that tensorboard option in the config file is turned on.

     "tensorboard" : true
    
  3. Open Tensorboard server

    Type tensorboard --logdir saved/log/ at the project root, then server will open at http://localhost:6006

By default, values of loss will be logged. If you need more visualizations, use add_scalar('tag', data), add_image('tag', image), etc in the trainer._train_epoch method. add_something() methods in this project are basically wrappers for those of tensorboardX.SummaryWriter and torch.utils.tensorboard.SummaryWriter modules.

Note: You don't have to specify current steps, since WriterTensorboard class defined at logger/visualization.py will track current steps.

TODO

  • Memory-Cache based Inference

Citations

If you find MASTER useful please cite our paper:

@article{Lu2021MASTER,
  title={{MASTER}: Multi-Aspect Non-local Network for Scene Text Recognition},
  author={Ning Lu and Wenwen Yu and Xianbiao Qi and Yihao Chen and Ping Gong and Rong Xiao and Xiang Bai},
  journal={Pattern Recognition},
  year={2021}
}

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgements

Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
πŸ€ Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

πŸ€ Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022