data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

Related tags

Deep LearningC2F-FWN
Overview

C2F-FWN

data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"
(https://arxiv.org/abs/2012.08976)

News

2020.12.16: Our paper is available on [ArXiv] now!
2020.12.28: Our SoloDance Dataset is available on [google drive] and [baidu pan (extraction code:gle4] now!
2020.12.28: A preview version of our code is now available, which needs further clean-up.

Example Results

  • motion transfer videos

  • multi-source appearance attribute editing videos

Prerequisites

  • Ubuntu
  • Python 3
  • NVIDIA GPU (>12GB memory) + CUDA10 cuDNN7
  • PyTorch 1.0.0

Other Dependencies

DConv (modified from original [DConv])

cd models/dconv
bash make.sh

FlowNet_v2 (directly ported from the original [flownet2] following the steps described in [vid2vid])

cd models/flownet2-pytorch
bash install.sh

Getting Started

It's a preview version of our source code. We will clean it up in the near future.

Notes

  1. Main functions for training and testing can be found in "train_stage1.py", "train_stage2.py", "train_stage2.py", "test_all_stages.py";
  2. Data preprocessings of all the stages can be found in "data" folder;
  3. Model definitions of all the stages can be found in "models" folder;
  4. Training and testing options can be found in "options" folder;
  5. Training and testing scripts can be found in "scripts" folder;
  6. Tool functions can be found in "util" folder.

Data Preparation

Download all the data packages from [google drive] or [baidu pan (extraction code:gle4], and uncompress them. You should create a directory named 'SoloDance' in the root (i.e., 'C2F-FWN') of this project, and then put 'train' and 'test' folders to 'SoloDance' you just created. The structure should look like this:
-C2F-FWN
---SoloDance
------train
------test

Training

1.Train the layout GAN of stage 1:

bash scripts/stage1/train_1.sh

2.Train our C2F-FWN of stage 2:

bash scripts/stage2/train_2_tps_only.sh
bash scripts/stage2/train_2.sh

3.Train the composition GAN of stage 3:

bash scripts/stage3/train_3.sh

Testing all the stages together (separate testing scripts for different stages will be updated in the near future)

bash scripts/full/test_full.sh

Acknowledgement

A large part of the code is borrowed from NVIDIA/vid2vid. Thanks for their wonderful works.

Citation

If you find this project useful for your research, please cite our paper using the following BibTeX entry.

@article{wei2020c2f,
  title={C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer},
  author={Wei, Dongxu and Xu, Xiaowei and Shen, Haibin and Huang, Kejie},
  journal={arXiv preprint arXiv:2012.08976},
  year={2020}
}
Owner
EKILI
interests: computer vision email: [email protected]
EKILI
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023