pix2pix in tensorflow.js

Overview

pix2pix in tensorflow.js

This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite

See a live demo here: https://yining1023.github.io/pix2pix_tensorflowjs/

Screen_Shot_2018_06_17_at_11_06_09_PM

Try it yourself: Download/clone the repository and run it locally:

git clone https://github.com/yining1023/pix2pix_tensorflowjs.git
cd pix2pix_tensorflowjs
python3 -m http.server

Credits: This project is based on affinelayer's pix2pix-tensorflow. I want to thank christopherhesse, nsthorat, and dsmilkov for their help and suggestions from this Github issue.

How to train a pix2pix(edges2xxx) model from scratch

    1. Prepare the data
    1. Train the model
    1. Test the model
    1. Export the model
    1. Port the model to tensorflow.js
    1. Create an interactive interface in the browser

1. Prepare the data

  • 1.1 Scrape images from google search
  • 1.2 Remove the background of the images
  • 1.3 Resize all images into 256x256 px
  • 1.4 Detect edges of all images
  • 1.5 Combine input images and target images
  • 1.6 Split all combined images into two folders: train and val

Before we start, check out affinelayer's Create your own dataset. I followed his instrustion for steps 1.3, 1.5 and 1.6.

1.1 Scrape images from google search

We can create our own target images. But for this edge2pikachu project, I downloaded a lot of images from google. I'm using this google_image_downloader to download images from google. After downloading the repo above, run -

$ python image_download.py <query> <number of images>

It will download images and save it to the current directory.

1.2 Remove the background of the images

Some images have some background. I'm using grabcut with OpenCV to remove background Check out the script here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/grabcut.py To run the script-

$ python grabcut.py <filename>

It will open an interactive interface, here are some instructions: https://github.com/symao/InteractiveImageSegmentation Here's an example of removing background using grabcut:

Screen Shot 2018 03 13 at 7 03 28 AM

1.3 Resize all images into 256x256 px

Download pix2pix-tensorflow repo. Put all images we got into photos/original folder Run -

$ python tools/process.py --input_dir photos/original --operation resize --output_dir photos/resized

We should be able to see a new folder called resized with all resized images in it.

1.4 Detect edges of all images

The script that I use to detect edges of images from one folder at once is here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/edge-detection.py, we need to change the path of the input images directory on line 31, and create a new empty folder called edges in the same directory. Run -

$ python edge-detection.py

We should be able to see edged-detected images in the edges folder. Here's an example of edge detection: left(original) right(edge detected)

0_batch2 0_batch2_2

1.5 Combine input images and target images

python tools/process.py --input_dir photos/resized --b_dir photos/blank --operation combine --output_dir photos/combined

Here is an example of the combined image: Notice that the size of the combined image is 512x256px. The size is important for training the model successfully.

0_batch2

Read more here: affinelayer's Create your own dataset

1.6 Split all combined images into two folders: train and val

python tools/split.py --dir photos/combined

Read more here: affinelayer's Create your own dataset

I collected 305 images for training and 78 images for testing.

2. Train the model

# train the model
python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

I used the High Power Computer(HPC) at NYU to train the model. You can see more instruction here: https://github.com/cvalenzuela/hpc. You can request GPU and submit a job to HPC, and use tunnels to tranfer large files between the HPC and your computer.

The training takes me 4 hours and 16 mins. After train, there should be a pikachu_train folder with checkpoint in it. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

3. Test the model

# test the model
python pix2pix.py --mode test --output_dir pikachu_test --input_dir pikachu/val --checkpoint pikachu_train

After testing, there should be a new folder called pikachu_test. In the folder, if you open the index.html, you should be able to see something like this in your browser:

Screen_Shot_2018_03_15_at_8_42_48_AM

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

4. Export the model

python pix2pix.py --mode export --output_dir /export/ --checkpoint /pikachu_train/ --which_direction BtoA

It will create a new export folder

5. Port the model to tensorflow.js

I followed affinelayer's instruction here: https://github.com/affinelayer/pix2pix-tensorflow/tree/master/server#exporting

cd server
python tools/export-checkpoint.py --checkpoint ../export --output_file static/models/pikachu_BtoA.pict

We should be able to get a file named pikachu_BtoA.pict, which is 54.4 MB. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

6. Create an interactive interface in the browser

Copy the model we get from step 5 to the models folder.

Owner
Yining Shi
Creative Coding 👩‍💻+ Machine Learning 🤖
Yining Shi
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022