AOT (Associating Objects with Transformers) in PyTorch

Overview

AOT (Associating Objects with Transformers) in PyTorch

A modular reference PyTorch implementation of Associating Objects with Transformers for Video Object Segmentation (NIPS 2021). [paper]

alt text

alt text

Highlights

  • High performance: up to 85.5% (R50-AOTL) on YouTube-VOS 2018 and 82.1% (SwinB-AOTL) on DAVIS-2017 Test-dev under standard settings.
  • High efficiency: up to 51fps (AOTT) on DAVIS-2017 (480p) even with 10 objects and 41fps on YouTube-VOS (1.3x480p). AOT can process multiple objects (less than a pre-defined number, 10 in default) as efficiently as processing a single object. This project also supports inferring any number of objects together within a video by automatic separation and aggregation.
  • Multi-GPU training and inference
  • Mixed precision training and inference
  • Test-time augmentation: multi-scale and flipping augmentations are supported.

TODO

  • Code documentation
  • Demo tool
  • Adding your own dataset

Requirements

  • Python3
  • pytorch >= 1.7.0 and torchvision
  • opencv-python
  • Pillow

Optional (for better efficiency):

  • Pytorch Correlation (recommend to install from source instead of using pip)

Demo

Coming

Model Zoo and Results

Pre-trained models and corresponding results reproduced by this project can be found in MODEL_ZOO.md.

Getting Started

  1. Prepare datasets:

    Please follow the below instruction to prepare datasets in each correspondding folder.

    • Static

      datasets/Static: pre-training dataset with static images. A guidance can be found in AFB-URR.

    • YouTube-VOS

      A commonly-used large-scale VOS dataset.

      datasets/YTB/2019: version 2019, download link. train is required for training. valid (6fps) and valid_all_frames (30fps, optional) are used for evaluation.

      datasets/YTB/2018: version 2018, download link. Only valid (6fps) and valid_all_frames (30fps, optional) are required for this project and used for evaluation.

    • DAVIS

      A commonly-used small-scale VOS dataset.

      datasets/DAVIS: TrainVal (480p) contains both the training and validation split. Test-Dev (480p) contains the Test-dev split. The full-resolution version is also supported for training and evluation but not required.

  2. Prepare ImageNet pre-trained encoders

    Select and download below checkpoints into pretrain_models:

    The current default training configs are not optimized for encoders larger than ResNet-50. If you want to use larger encoders, we recommond to early stop the main-training stage at 80,000 iteration (100,000 in default) to avoid over-fitting on the seen classes of YouTube-VOS.

  3. Training and Evaluation

    The example script will train AOTT with 2 stages using 4 GPUs and auto-mixed precision (--amp). The first stage is a pre-training stage using Static dataset, and the second stage is main-training stage, which uses both YouTube-VOS 2019 train and DAVIS-2017 train for training, resulting in a model can generalize to different domains (YouTube-VOS and DAVIS) and different frame rates (6fps, 24fps, and 30fps).

    Notably, you can use only the YouTube-VOS 2019 train split in the second stage by changing pre_ytb_dav to pre_ytb, which leads to better YouTube-VOS performance on unseen classes. Besides, if you don't want to do the first stage, you can start the training from stage ytb, but the performance will drop about 1~2% absolutely.

    After the training is finished, the example script will evaluate the model on YouTube-VOS and DAVIS, and the results will be packed into Zip files. For calculating scores, please use offical YouTube-VOS servers (2018 server and 2019 server) and offical DAVIS toolkit.

Adding your own dataset

Coming

Troubleshooting

Waiting

Citations

Please consider citing the related paper(s) in your publications if it helps your research.

@inproceedings{yang2021aot,
  title={Associating Objects with Transformers for Video Object Segmentation},
  author={Yang, Zongxin and Wei, Yunchao and Yang, Yi},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

License

This project is released under the BSD-3-Clause license. See LICENSE for additional details.

Owner
CS graduate student, Zhejiang University.
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023