“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

Overview

EfficientFace

Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI'21

Requirements

  • Python >= 3.6
  • PyTorch >= 1.2
  • torchvision >= 0.4.0

Training

  • Step 1: download basic emotions dataset of RAF-DB, and make sure it has the structure like the following:
./RAF-DB/
         train/
               0/
                 train_09748.jpg
                 ...
                 train_12271.jpg
               1/
               ...
               6/
         test/
              0/
              ...
              6/

[Note] 0: Neutral; 1: Happiness; 2: Sadness; 3: Surprise; 4: Fear; 5: Disgust; 6: Anger
  • Step 2: download pre-trained model from Google Drive, and put it into ./checkpoint.
  • Step 3: change the --data in run.sh to your path
  • Step 4: run sh run.sh

Pre-trained Models

  • Sept. 16, 2021 Update
    We provide the pre-trained ResNet-18 and ResNet-50 on MS-Celeb-1M (classes number is 12666) for your research.
    The Google Driver for ResNet-18 model. The Google Driver for ResNet-50 model.
    The pre-trained ResNet-50 model can be also used for LDG.
  • Nov. 6, 2021 Update
    The fine-tuned LDG models on CAER-S, AffectNet-7, and AffectNet-8 can be downloaded here, here, and here, respectively.
  • Nov. 12, 2021 Update
    The trained EfficientFace model on RAF-DB, CAER-S, AffectNet-7, and AffectNet-8 can be downloaded here, here, here, and here, respectively. As demonstrated in the paper, the testing accuracy is 88.36%, 85.87%, 63.70%, and 59.89%, respectively.

Citation

@inproceedings{zhao2021robust,
  title={Robust Lightweight Facial Expression Recognition Network with Label Distribution Training},
  author={Zhao, Zengqun and Liu, Qingshan and Zhou, Feng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3510--3519},
  year={2021}
}

Note

The samples' number of the CAER-S dataset employed in our work should be: all (69,982 samples), training set (48,995 samples), and test set (20,987 samples). We apologize for the typos in our paper.

Owner
Zengqun Zhao
M.S. Student.
Zengqun Zhao
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022