12 Repositories
Latest Python Libraries
A PyTorch implementation of the continual learning experiments with deep neural networks
Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain
🛠️ Tools for Transformers compression using Lightning ⚡
Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.
Distiller is an open-source Python package for neural network compression research.
Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres
CCCL: Contrastive Cascade Graph Learning.
CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr
Adaptive, interpretable wavelets across domains (NeurIPS 2021)
Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning
DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.
HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.
LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh
RL and distillation in CARLA using a factorized world model
World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks
MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.
ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation
Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from