当前位置:网站首页>AI作业ch8
AI作业ch8
2022-06-12 06:18:00 【JamSlade】
1
• [决策树] 基于信息增益,对下述数据集进行决策树构建,描述过程
一个关于配眼镜的一个决策分类所需要的数据,数据集包含4属性:
age
astigmatism
trear-prod-rate为输入特征,
contact-lenses为决策属性。

第一特征
我们可以考虑以下公式
G ( D , a ) = H ( D ) − ∑ v = 1 V ∣ D v ∣ D H ( D v ) G(D,a)=H(D)-\sum^V_{v=1}\frac{|D^v|}{D}H(D^v) G(D,a)=H(D)−v=1∑VD∣Dv∣H(Dv)
H ( D ) H(D) H(D)在数据确定的时候已经定下来了,所以我们只需要考虑后半部分 ∑ v = 1 V ∣ D v ∣ D \sum^V_{v=1}\frac{|D^v|}{D} ∑v=1VD∣Dv∣
先考虑三个特征值
- 针对年龄
| 特征值 | soft | hard | none | sum |
|---|---|---|---|---|
| young | 1 | 1 | 1 | 3 |
| pre-prebyopic | 1 | 1 | 3 | 5 |
| prebyopic | 0 | 1 | 3 | 4 |
通过公式不难得到
a g e = − [ 3 12 ( 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 ) + 5 12 ( 1 5 l o g 2 1 5 + 1 5 l o g 2 1 5 + 3 5 l o g 2 3 5 ) + 4 12 ( 1 4 l o g 2 1 4 + 3 4 l o g 2 3 4 ) ] = 1.238 \begin{aligned}age = &-[\frac{3}{12}(\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3})\\ &+\frac{5}{12}(\frac{1}{5}log_2\frac{1}{5}+\frac{1}{5}log_2\frac{1}{5}+\frac{3}{5}log_2\frac{3}{5})\\&+\frac{4}{12}(\frac{1}{4}log_2\frac{1}{4}+\frac{3}{4}log_2\frac{3}{4})] = 1.238\end{aligned} age=−[123(31log231+31log231+31log231)+125(51log251+51log251+53log253)+124(41log241+43log243)]=1.238
- 针对散光
| 特征值 | soft | hard | none | sum |
|---|---|---|---|---|
| yes | 0 | 3 | 4 | 7 |
| no | 1 | 1 | 3 | 5 |
代入公式
a s t i g m a t i s m = 0.979 astigmatism = 0.979 astigmatism=0.979
- 泪液生成率
| 特征值 | soft | hard | none | sum |
|---|---|---|---|---|
| reduced | 0 | 0 | 4 | 4 |
| normal | 2 | 3 | 3 | 8 |
代入公式
t e a r _ p r o d u c t i o n _ r a t e = 1.041 tear\_production\_rate = 1.041 tear_production_rate=1.041
所以我们首先取astigmatism可以让函数最大
第二特征
然后再考虑剩下的特征
首先基于Yes情况下的输入特征
| 特征值 | soft | hard | none | sum |
|---|---|---|---|---|
| young | 0 | 1 | 1 | 2 |
| pre-prebyopic | 0 | 1 | 2 | 3 |
| prebyopic | 0 | 1 | 1 | 2 |
| reduced | 0 | 0 | 2 | 2 |
| normal | 0 | 3 | 2 | 5 |
a g e = − [ 2 7 ( 1 2 l o g 2 1 2 + 1 2 l o g 2 1 2 ) + 3 7 ( 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 + 1 3 l o g 2 1 3 ) + 2 7 ( 1 2 l o g 2 1 2 + 1 2 l o g 2 1 2 ) ] = 0.965 \begin{aligned}age= &-[\frac{2}{7}(\frac{1}{2}log_2\frac{1}{2}+\frac{1}{2}log_2\frac{1}{2}) \\ & +\frac{3}{7}(\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3}+\frac{1}{3}log_2\frac{1}{3})\\ &+\frac{2}{7}(\frac{1}{2}log_2\frac{1}{2}+\frac{1}{2}log_2\frac{1}{2})] = 0.965\end{aligned} age=−[72(21log221+21log221)+73(31log231+31log231+31log231)+72(21log221+21log221)]=0.965
t e a r _ p r o d u c t i o n _ r a t e = 0.694 tear\_production\_rate = 0.694 tear_production_rate=0.694
**取yes的时候选tear
**
基于No的情况
| 特征值 | soft | hard | none | sum |
|---|---|---|---|---|
| young | 1 | 0 | 0 | 1 |
| pre-prebyopic | 1 | 0 | 1 | 2 |
| prebyopic | 0 | 0 | 2 | 2 |
| reduced | 0 | 0 | 2 | 2 |
| normal | 2 | 0 | 1 | 3 |
a g e = 0.4 age = 0.4 age=0.4
t e a r = 0.551 tear=0.551 tear=0.551
取no的时候应选择age
可以得到如下的决策树
2.
[线性分类] 推导下述logit function和logistic function等价:
p ( X ) = e β 0 + β 1 X 1 + e β 0 + β 1 X p ( X ) 1 − p ( X ) = e β 0 + β 1 X p(X)=\frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}}\quad \frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X} p(X)=1+eβ0+β1Xeβ0+β1X1−p(X)p(X)=eβ0+β1X
换元,令 f ( X ) = p ( X ) 1 − p ( X ) , f ( X ) 1 − f ( X ) = p ( X ) f(X)=\frac{p(X)}{1-p(X)}, \frac{f(X)}{1-f(X)}=p(X) f(X)=1−p(X)p(X),1−f(X)f(X)=p(X)
p ( X ) 1 − p ( X ) = f ( X ) = e β 0 + β 1 X 1 + e β 0 + β 1 X 1 − e β 0 + β 1 X 1 + e β 0 + β 1 X = e β 0 + β 1 X 1 + e β 0 + β 1 X − ( e β 0 + β 1 X ) = e β 0 + β 1 X = f ( X ) 1 − f ( X ) = p ( X ) \left.\begin{aligned} \frac{p(X)}{1-p(X)}=f(X)& =\frac{\frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}}} {1- \frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}}}\\ \\ & =\frac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X} -(e^{\beta_0+\beta_1X}) }\\ &=e^{\beta_0+\beta_1X}\\ &=\frac{f(X)}{1-f(X)} = p(X) \end{aligned}\right. 1−p(X)p(X)=f(X)=1−1+eβ0+β1Xeβ0+β1X1+eβ0+β1Xeβ0+β1X=1+eβ0+β1X−(eβ0+β1X)eβ0+β1X=eβ0+β1X=1−f(X)f(X)=p(X)
综上等价
边栏推荐
猜你喜欢

Simulateur nightGod ADB View log

摄像头拍摄运动物体,产生运动模糊/拖影的原因分析

Touch screen setting for win7 system dual screen extended display
![Leetcode buckle -10 Regular expression matching analysis [recursion and dynamic programming]](/img/25/b3c475e2b03c39b7c576b6d01f9d56.jpg)
Leetcode buckle -10 Regular expression matching analysis [recursion and dynamic programming]

IBL of directx11 advanced tutorial PBR (3)

Houdini script vex learning

前台展示LED数字(计算器上数字类型)

Book classification based on Naive Bayes

(UE4 4.27) customize globalshader

Word vector training based on nnlm
随机推荐
交叉编译libev
RMB classification II
Findasync and include LINQ statements - findasync and include LINQ statements
Explanation of sensor flicker/banding phenomenon
Leetcode 第 80 场双周赛题解
Univariate linear regression model
Get the size of the picture
English语法_副词_有无ly,意义不同
English grammar_ Adverb_ With or without ly, the meaning is different
N-degree Bessel curve
Leetcode-1512. Number of good pairs
Leetcode-139. Word splitting
SQLite cross compile dynamic library
肝了一個月的 DDD,一文帶你掌握
Idea common configuration
A month's worth of DDD will help you master it
Une explication du 80e match bihebdomadaire de leetcode
Mastering UI development with unity
The first principle of thinking method
. Net core - pass Net core will Net to cross platform