当前位置:网站首页>Good Key, Bad Key (思维,临项交换,经典方法)
Good Key, Bad Key (思维,临项交换,经典方法)
2022-08-02 03:08:00 【lovesickman】
Good Key, Bad Key (思维,临项交换)
题目描述
There are $ n $ chests. The $ i $ -th chest contains $ a_i $ coins. You need to open all $ n $ chests in order from chest $ 1 $ to chest $ n $ .
There are two types of keys you can use to open a chest:
- a good key, which costs $ k $ coins to use;
- a bad key, which does not cost any coins, but will halve all the coins in each unopened chest, including the chest it is about to open. The halving operation will round down to the nearest integer for each chest halved. In other words using a bad key to open chest $ i $ will do $ a_i = \lfloor{\frac{a_i}{2}\rfloor} $ , $ a_{i+1} = \lfloor\frac{a_{i+1}}{2}\rfloor, \dots, a_n = \lfloor \frac{a_n}{2}\rfloor $ ;
- any key (both good and bad) breaks after a usage, that is, it is a one-time use.
You need to use in total $ n $ keys, one for each chest. Initially, you have no coins and no keys. If you want to use a good key, then you need to buy it.
During the process, you are allowed to go into debt; for example, if you have $ 1 $ coin, you are allowed to buy a good key worth $ k=3 $ coins, and your balance will become $ -2 $ coins.
Find the maximum number of coins you can have after opening all $ n $ chests in order from chest $ 1 $ to chest $ n $ .
输入格式
The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases.
The first line of each test case contains two integers $ n $ and $ k $ ( $ 1 \leq n \leq 10^5 $ ; $ 0 \leq k \leq 10^9 $ ) — the number of chests and the cost of a good key respectively.
The second line of each test case contains $ n $ integers $ a_i $ ( $ 0 \leq a_i \leq 10^9 $ ) — the amount of coins in each chest.
The sum of $ n $ over all test cases does not exceed $ 10^5 $ .
输出格式
For each test case output a single integer — the maximum number of coins you can obtain after opening the chests in order from chest $ 1 $ to chest $ n $ .
Please note, that the answer for some test cases won’t fit into 32-bit integer type, so you should use at least 64-bit integer type in your programming language (like long long for C++).
样例 #1
样例输入 #1
5
4 5
10 10 3 1
1 2
1
3 12
10 10 29
12 51
5 74 89 45 18 69 67 67 11 96 23 59
2 57
85 60
样例输出 #1
11
0
13
60
58
提示
In the first test case, one possible strategy is as follows:
- Buy a good key for $ 5 $ coins, and open chest $ 1 $ , receiving $ 10 $ coins. Your current balance is $ 0 + 10 - 5 = 5 $ coins.
- Buy a good key for $ 5 $ coins, and open chest $ 2 $ , receiving $ 10 $ coins. Your current balance is $ 5 + 10 - 5 = 10 $ coins.
- Use a bad key and open chest $ 3 $ . As a result of using a bad key, the number of coins in chest $ 3 $ becomes $ \left\lfloor \frac{3}{2} \right\rfloor = 1 $ , and the number of coins in chest $ 4 $ becomes $ \left\lfloor \frac{1}{2} \right\rfloor = 0 $ . Your current balance is $ 10 + 1 = 11 $ .
- Use a bad key and open chest $ 4 $ . As a result of using a bad key, the number of coins in chest $ 4 $ becomes $ \left\lfloor \frac{0}{2} \right\rfloor = 0 $ . Your current balance is $ 11 + 0 = 11 $ .
At the end of the process, you have $ 11 $ coins, which can be proven to be maximal.
我就是不想动脑子的SB
明显有直觉,两种操作有两段性,用邻项交换证明一下就行。
证明之后维护一个前缀和,观察到 /2 ,警觉!观察值域,因为 $log_2{10^9} = 29.xxx $ ,所以时间复杂度 O ( 30 n ) O(30n) O(30n)
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <sstream>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mem(f, x) memset(f,x,sizeof(f))
#define fo(i,a,n) for(int i=(a);i<=(n);++i)
#define fo_(i,a,n) for(int i=(a);i<(n);++i)
#define debug(x) cout<<#x<<":"<<x<<endl;
#define endl '\n'
using namespace std;
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
template<typename T>
ostream& operator<<(ostream& os,const vector<T>&v){
for(int i=0,j=0;i<v.size();i++,j++)if(j>=5){
j=0;puts("");}else os<<v[i]<<" ";return os;}
template<typename T>
ostream& operator<<(ostream& os,const set<T>&v){
for(auto c:v)os<<c<<" ";return os;}
template<typename T1,typename T2>
ostream& operator<<(ostream& os,const map<T1,T2>&v){
for(auto c:v)os<<c.first<<" "<<c.second<<endl;return os;}
template<typename T>inline void rd(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {
if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
typedef pair<int,int>PII;
typedef pair<long,long>PLL;
typedef long long ll;
typedef unsigned long long ull;
const int N=2e5+10,M=1e9+7;
ll n,k,m,_;
ll a[N];
void solve(){
cin>>n>>k;
fo(i,1,n)cin>>a[i];
ll sum,ans;
ans = sum = 0;
fo(i,0,n){
ll cnt = 0;
for(int j=i+1;j<=min((int)n,i+31);j++){
ll v = a[j];
v >>= (j-i);
cnt+=v;
}
if(i>=1)
sum += (a[i]-k);
ans = max(sum+cnt,ans);
}
cout<<ans<<endl;
}
int main(){
cin>>_;
while(_--){
solve();
}
return 0;
}
边栏推荐
- mysql8.0.28 download and installation detailed tutorial, suitable for win11
- 给你一个大厂面试的机会,你能面试上吗?进来看看!
- 输入延迟切换系统的预测镇定控制
- 什么是轮式里程计
- 【LeetCode】1374. Generate a string with an odd number of each character
- 22-08-01 西安 尚医通(01)跨域配置、Swagger2、R类、统一异常处理和自定义异常、Logback日志
- 7-35 城市间紧急救援 (25 分)c语言(测试点二未通过)
- 8万字带你入门Rust
- 基于可逆网络的单一图像超分辨率
- Heao Technology Network Interview (with reference answers)
猜你喜欢
随机推荐
DVWA之SQL注入
VPS8504C 微功率隔离电源隔离芯片 VPSC源特科技
MySQL8.0.26安装配置教程(windows 64位)
Istio微服务治理网格的全方面可视化监控(微服务架构展示、资源监控、流量监控、链路监控)
就瞎写=感想
PHP WebShell Free Kill
MySQL8 -- use msi (graphical user interface) under Windows installation method
#{}和${}的区别
(转帖)hashcode和equals的关系
给你一个大厂面试的机会,你能面试上吗?进来看看!
生成器知道鉴别器在无条件GANs中应该学习什么
DOM破坏及复现实验
Common SQL interview questions: 50 classic examples
ModuleNotFoundError: No module named ‘openpyxl‘
2W字!梳理50道经典计算机网络面试题(收藏版)
合奥科技网络 面试(含参考答案)
基于优化的多核局部费舍尔判别分析的故障分类
消息队列经典十连问
什么是轮式里程计
“带薪划水”偷刷阿里老哥的面经宝典,三次挑战字节,终成正果






![[Daily LeetCode]——1. The sum of two numbers](/img/11/8a68f4ecb24fa19e3c804d536cdbec.png)

