当前位置:网站首页>[set theory] set concept and relationship (set represents | number set | set relationship | contains | equality | set relationship property)
[set theory] set concept and relationship (set represents | number set | set relationship | contains | equality | set relationship property)
2022-07-03 04:02:00 【Programmer community】
List of articles
- One 、 Set theory system
- Two 、 Sets represent
- 3、 ... and 、 Count the sets
- 3、 ... and 、 A collection of relations
- 1、 Inclusion relation
- 2、 Equality relation
- 3、 The property of containing relation between sets
One 、 Set theory system
Set theory system :
- Naive set theory : Inclusion paradox ; Naive set theory in Cannot define a set precisely ;
- Axiomatic set theory : In order to eliminate the paradox in naive set theory , Axiomatic set theory established ; Axiomatic set theory is more rigorous , Describe what a set is by a set of axioms ;
Two 、 Sets represent
Sets represent : Use Capital Represents a collection , Lowercase letters Represents an element in a collection ;
Enumeration : List all the elements in the set , Use commas to separate elements , Use curly braces “{}” Cover up ; Such as :
A
=
{
0
,
1
,
2
,
3
}
A = \{0, 1, 2, 3\}
A={ 0,1,2,3} ,
B
=
{
0
,
1
,
2
,
3
,
⋯
}
B = \{0, 1, 2, 3, \cdots\}
B={ 0,1,2,3,⋯}
Description : Use The predicate
P
(
x
)
P(x)
P(x) Express
x
x
x Have the quality of
P
P
P , Use
{
x
∣
P
(
x
)
}
\{x | P(x)\}
{ x∣P(x)} Indicates that it has properties
P
P
P Set ;
P
(
x
)
P(x)
P(x) Express
x
x
x It's English letters ,
{
x
∣
P
(
x
)
}
\{ x | P(x) \}
{ x∣P(x)} Represents the English alphabet ;
P
(
x
)
P(x)
P(x) Express
x
x
x It's even ,
{
x
∣
P
(
x
)
}
\{ x | P(x) \}
{ x∣P(x)} Represents an even set ;
Sets represent considerations :
No repetition : Collection There can be no repeating elements ;
lack order : The elements in the set are A disorderly ;
Set representation transformation : The representations of sets can be transformed into each other , Description and Enumeration Can transform each other ;
Example of representation transformation :
Enumeration :
A
=
{
0
,
2
,
4
,
6
,
⋯
}
A=\{ 0, 2, 4 , 6 , \cdots \}
A={ 0,2,4,6,⋯}
Description :
A
=
{
x
∣
x
≥
0
and
And
x
yes
accidentally
Count
}
A = \{ x | x \geq 0 also x It's even \}
A={ x∣x≥0 and And x yes accidentally Count }
3、 ... and 、 Count the sets
Set of natural numbers :
N
=
{
0
,
1
,
2
,
⋯
}
N = \{ 0, 1 , 2 , \cdots \}
N={ 0,1,2,⋯}
Set of integers :
Z
=
{
0
,
±
1
,
±
2
,
⋯
}
Z = \{ 0, \pm 1 , \pm 2 , \cdots \}
Z={ 0,±1,±2,⋯}
The set of rational numbers :
Q
Q
Q
Set of real numbers :
R
R
R
Complex sets :
C
C
C
3、 ... and 、 A collection of relations
A collection of relations Yes Inclusion relation , Equality relation , In addition, the nature of the relationship is Self reflection , Antisymmetry , Transitivity ;
1、 Inclusion relation
The containment relationship of the set :
describe :
A
,
B
A, B
A,B Two sets , If
B
B
B The elements in All are
A
A
A The elements in , call
B
B
B aggregate yes
A
A
A A collection of A subset of ,
A
A
A contain
B
B
B ,
B
B
B Included in
A
A
A ;
Write it down as :
B
⊆
A
B \subseteq A
B⊆A
Symbolic form :
B
⊆
A
⇔
∀
x
(
x
∈
B
→
x
∈
A
)
B \subseteq A \Leftrightarrow \forall x ( x \in B \to x \in A )
B⊆A⇔∀x(x∈B→x∈A) , For all objects , As long as it belongs to
B
B
B aggregate , Belong to
A
A
A aggregate ;
The set does not contain relationships :
describe : If aggregate
B
B
B No aggregate
A
A
A Subset
Write it down as :
B
⊈
A
B \not\subseteq A
B⊆A ;
Symbolic form :
B
⊈
A
⇔
∃
x
(
x
∈
B
∧
x
∉
A
)
B \not\subseteq A \Leftrightarrow \exist x ( x \in B \land x \not\in A )
B⊆A⇔∃x(x∈B∧x∈A) , For all objects , The existing object belongs to
B
B
B aggregate , Do not belong to
A
A
A aggregate ;
Include examples :
A
=
1
,
2
,
3
,
4
A = {1, 2, 3, 4}
A=1,2,3,4 ,
B
=
1
,
2
,
3
B = {1, 2, 3}
B=1,2,3 ,
C
=
1
,
2
C = {1, 2}
C=1,2
Yes
C
⊆
B
C \subseteq B
C⊆B ,
C
⊆
A
C \subseteq A
C⊆A ,
B
⊆
A
B \subseteq A
B⊆A
2、 Equality relation
The equality of sets :
describe :
A
,
B
A, B
A,B Two sets , If
A
A
A contain
B
B
B , also
B
B
B contain
A
A
A , said
A
A
A And
B
B
B equal ;
Write it down as :
A
=
B
A = B
A=B
Symbolize :
A
=
B
⇔
∀
x
(
x
∈
B
x
∈
A
)
A = B \Leftrightarrow \forall x ( x \in B \leftrightarrow x \in A )
A=B⇔∀x(x∈Bx∈A)
3、 The property of containing relation between sets
The property of containing relation between sets : Below
A
,
B
,
C
A, B, C
A,B,C It's three sets , The following propositions are true propositions ;
reflexivity :
A
⊆
A
A \subseteq A
A⊆A , The set really contains itself ;
Antisymmetry : if
A
⊆
B
A \subseteq B
A⊆B And
B
≠
A
B \not= A
B=A , be
B
⊈
A
B \not\subseteq A
B⊆A
( This property is equivalent to if
A
⊆
B
A \subseteq B
A⊆B And
B
⊆
A
B \subseteq A
B⊆A , be
A
=
B
A = B
A=B )
Transitivity : if
A
⊆
B
A \subseteq B
A⊆B And
B
⊆
C
B \subseteq C
B⊆C , be
A
⊆
C
A \subseteq C
A⊆C
边栏推荐
- The 10th China Cloud Computing Conference · China Station: looking forward to the trend of science and technology in the next decade
- 【DRM】DRM bridge驱动调用流程简单分析
- Deep dive kotlin synergy (20): build flow
- Read a paper_ ChineseBert
- Simple wechat applet development page Jump, data binding, obtaining user information, obtaining user location information
- DAPP for getting started with eth
- 在 .NET 6 项目中使用 Startup.cs
- Ffmpeg recording screen and screenshot
- Nodejs Foundation: shallow chat URL and querystring module
- Wechat applet + Alibaba IOT platform + Hezhou air724ug built with server version system analysis
猜你喜欢
随机推荐
JMeter starts from zero (III) -- simple use of regular expressions
[brush questions] connected with rainwater (one dimension)
[Blue Bridge Road -- bug free code] DS18B20 temperature reading code analysis
"Final review" 16/32-bit microprocessor (8086) basic register
Is pytorch difficult to learn? How to learn pytorch well?
如何迈向IPv6之IPv6过渡技术-尚文网络奎哥
eth入门之简介
pytorch项目怎么跑?
SAP UI5 应用开发教程之一百零五 - SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
Dynamic programming: longest common substring and longest common subsequence
[mathematical logic] predicate logic (first-order predicate logic formula | example)
Without sxid, suid & sgid will be in danger- Shangwen network xUP Nange
nodejs基础:浅聊url和querystring模块
sigaction的使用
Simple wechat applet development page Jump, data binding, obtaining user information, obtaining user location information
Write it down once Net travel management background CPU Explosion Analysis
Analysis of the reason why the server cannot connect remotely
CVPR 2022 | Dalian Institute of technology proposes a self calibration lighting framework for low light level image enhancement of real scenes
[Blue Bridge Road - bug free code] pcf8591 - code analysis of AD conversion
China Mobile Internet of things oneos and onenet were selected in the list of 2021 Internet of things demonstration projects