当前位置:网站首页>[set theory] set concept and relationship (set represents | number set | set relationship | contains | equality | set relationship property)
[set theory] set concept and relationship (set represents | number set | set relationship | contains | equality | set relationship property)
2022-07-03 04:02:00 【Programmer community】
List of articles
- One 、 Set theory system
- Two 、 Sets represent
- 3、 ... and 、 Count the sets
- 3、 ... and 、 A collection of relations
- 1、 Inclusion relation
- 2、 Equality relation
- 3、 The property of containing relation between sets
One 、 Set theory system
Set theory system :
- Naive set theory : Inclusion paradox ; Naive set theory in Cannot define a set precisely ;
- Axiomatic set theory : In order to eliminate the paradox in naive set theory , Axiomatic set theory established ; Axiomatic set theory is more rigorous , Describe what a set is by a set of axioms ;
Two 、 Sets represent
Sets represent : Use Capital Represents a collection , Lowercase letters Represents an element in a collection ;
Enumeration : List all the elements in the set , Use commas to separate elements , Use curly braces “{}” Cover up ; Such as :
A
=
{
0
,
1
,
2
,
3
}
A = \{0, 1, 2, 3\}
A={ 0,1,2,3} ,
B
=
{
0
,
1
,
2
,
3
,
⋯
}
B = \{0, 1, 2, 3, \cdots\}
B={ 0,1,2,3,⋯}
Description : Use The predicate
P
(
x
)
P(x)
P(x) Express
x
x
x Have the quality of
P
P
P , Use
{
x
∣
P
(
x
)
}
\{x | P(x)\}
{ x∣P(x)} Indicates that it has properties
P
P
P Set ;
P
(
x
)
P(x)
P(x) Express
x
x
x It's English letters ,
{
x
∣
P
(
x
)
}
\{ x | P(x) \}
{ x∣P(x)} Represents the English alphabet ;
P
(
x
)
P(x)
P(x) Express
x
x
x It's even ,
{
x
∣
P
(
x
)
}
\{ x | P(x) \}
{ x∣P(x)} Represents an even set ;
Sets represent considerations :
No repetition : Collection There can be no repeating elements ;
lack order : The elements in the set are A disorderly ;
Set representation transformation : The representations of sets can be transformed into each other , Description and Enumeration Can transform each other ;
Example of representation transformation :
Enumeration :
A
=
{
0
,
2
,
4
,
6
,
⋯
}
A=\{ 0, 2, 4 , 6 , \cdots \}
A={ 0,2,4,6,⋯}
Description :
A
=
{
x
∣
x
≥
0
and
And
x
yes
accidentally
Count
}
A = \{ x | x \geq 0 also x It's even \}
A={ x∣x≥0 and And x yes accidentally Count }
3、 ... and 、 Count the sets
Set of natural numbers :
N
=
{
0
,
1
,
2
,
⋯
}
N = \{ 0, 1 , 2 , \cdots \}
N={ 0,1,2,⋯}
Set of integers :
Z
=
{
0
,
±
1
,
±
2
,
⋯
}
Z = \{ 0, \pm 1 , \pm 2 , \cdots \}
Z={ 0,±1,±2,⋯}
The set of rational numbers :
Q
Q
Q
Set of real numbers :
R
R
R
Complex sets :
C
C
C
3、 ... and 、 A collection of relations
A collection of relations Yes Inclusion relation , Equality relation , In addition, the nature of the relationship is Self reflection , Antisymmetry , Transitivity ;
1、 Inclusion relation
The containment relationship of the set :
describe :
A
,
B
A, B
A,B Two sets , If
B
B
B The elements in All are
A
A
A The elements in , call
B
B
B aggregate yes
A
A
A A collection of A subset of ,
A
A
A contain
B
B
B ,
B
B
B Included in
A
A
A ;
Write it down as :
B
⊆
A
B \subseteq A
B⊆A
Symbolic form :
B
⊆
A
⇔
∀
x
(
x
∈
B
→
x
∈
A
)
B \subseteq A \Leftrightarrow \forall x ( x \in B \to x \in A )
B⊆A⇔∀x(x∈B→x∈A) , For all objects , As long as it belongs to
B
B
B aggregate , Belong to
A
A
A aggregate ;
The set does not contain relationships :
describe : If aggregate
B
B
B No aggregate
A
A
A Subset
Write it down as :
B
⊈
A
B \not\subseteq A
B⊆A ;
Symbolic form :
B
⊈
A
⇔
∃
x
(
x
∈
B
∧
x
∉
A
)
B \not\subseteq A \Leftrightarrow \exist x ( x \in B \land x \not\in A )
B⊆A⇔∃x(x∈B∧x∈A) , For all objects , The existing object belongs to
B
B
B aggregate , Do not belong to
A
A
A aggregate ;
Include examples :
A
=
1
,
2
,
3
,
4
A = {1, 2, 3, 4}
A=1,2,3,4 ,
B
=
1
,
2
,
3
B = {1, 2, 3}
B=1,2,3 ,
C
=
1
,
2
C = {1, 2}
C=1,2
Yes
C
⊆
B
C \subseteq B
C⊆B ,
C
⊆
A
C \subseteq A
C⊆A ,
B
⊆
A
B \subseteq A
B⊆A
2、 Equality relation
The equality of sets :
describe :
A
,
B
A, B
A,B Two sets , If
A
A
A contain
B
B
B , also
B
B
B contain
A
A
A , said
A
A
A And
B
B
B equal ;
Write it down as :
A
=
B
A = B
A=B
Symbolize :
A
=
B
⇔
∀
x
(
x
∈
B
x
∈
A
)
A = B \Leftrightarrow \forall x ( x \in B \leftrightarrow x \in A )
A=B⇔∀x(x∈Bx∈A)
3、 The property of containing relation between sets
The property of containing relation between sets : Below
A
,
B
,
C
A, B, C
A,B,C It's three sets , The following propositions are true propositions ;
reflexivity :
A
⊆
A
A \subseteq A
A⊆A , The set really contains itself ;
Antisymmetry : if
A
⊆
B
A \subseteq B
A⊆B And
B
≠
A
B \not= A
B=A , be
B
⊈
A
B \not\subseteq A
B⊆A
( This property is equivalent to if
A
⊆
B
A \subseteq B
A⊆B And
B
⊆
A
B \subseteq A
B⊆A , be
A
=
B
A = B
A=B )
Transitivity : if
A
⊆
B
A \subseteq B
A⊆B And
B
⊆
C
B \subseteq C
B⊆C , be
A
⊆
C
A \subseteq C
A⊆C
边栏推荐
- JS实现图片懒加载
- Half of 2022 is over, so we must hurry up
- 2022-07-02:以下go语言代码输出什么?A:编译错误;B:Panic;C:NaN。 package main import “fmt“ func main() { var a =
- Analysis of the reason why the server cannot connect remotely
- sigaction的使用
- Recursion: depth first search
- Appium自动化测试框架
- What can learning pytorch do?
- 2022deepbrainchain biweekly report no. 104 (01.16-02.15)
- pytorch难学吗?如何学好pytorch?
猜你喜欢

Recursion: quick sort, merge sort and heap sort

2022-07-02: what is the output of the following go language code? A: Compilation error; B:Panic; C:NaN。 package main import “fmt“ func main() { var a =

Role of JS No

China Mobile Internet of things oneos and onenet were selected in the list of 2021 Internet of things demonstration projects

300+篇文献!一文详解基于Transformer的多模态学习最新进展

In Net 6 project using startup cs

Without sxid, suid & sgid will be in danger- Shangwen network xUP Nange

毕设-基于SSM宠物领养中心

Deep dive kotlin synergy (19): flow overview

CVPR 2022 | 大連理工提出自校准照明框架,用於現實場景的微光圖像增强
随机推荐
vim 的实用操作
2022 mobile crane driver examination registration and mobile crane driver operation examination question bank
Recursion: depth first search
Web会话管理安全问题
Message queue addition failure
Idea shortcut keys
How to move towards IPv6: IPv6 Transition Technology - Shangwen network quigo
2022-07-02: what is the output of the following go language code? A: Compilation error; B:Panic; C:NaN。 package main import “fmt“ func main() { var a =
Half of 2022 is over, so we must hurry up
Without sxid, suid & sgid will be in danger- Shangwen network xUP Nange
js实现在可视区内,文字图片动画效果
[brush questions] most elements (super water king problem)
【毕业季·进击的技术er】职场人的自白
Recursion: quick sort, merge sort and heap sort
eth入门之简介
redis在服务器linux下的启动的相关命令(安装和配置)
SAP UI5 应用开发教程之一百零五 - SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
Application of I2C protocol of STM32F103 (read and write EEPROM)
CVPR 2022 | Dalian Institute of technology proposes a self calibration lighting framework for low light level image enhancement of real scenes
CVPR 2022 | 大連理工提出自校准照明框架,用於現實場景的微光圖像增强