当前位置:网站首页>20211006 integral, differential and projection belong to linear transformation
20211006 integral, differential and projection belong to linear transformation
2022-06-13 09:03:00 【What's my name】
Two criteria for judging linear transformation : Number multiplication and addition .
therefore , Integral and differential belong to linear transformation .
example 1.11 1.11 1.11 In linear space P n P_{n} Pn in , Differentiation is a linear transformation , here use D D D Express , namely
D f ( t ) = f ′ ( t ) ( ∀ f ( t ) ∈ P n ) D f(t)=f^{\prime}(t) \quad\left(\forall f(t) \in P_{n}\right) Df(t)=f′(t)(∀f(t)∈Pn)
in fact , For any f ( t ) , g ( t ) ∈ P n f(t), g(t) \in P_{n} f(t),g(t)∈Pn And k , l ∈ R k, l \in \mathbf{R} k,l∈R, Yes
D ( k f ( t ) + lg ( t ) ) = ( k f ( t ) + lg ( t ) ) ′ = k f ′ ( t ) + lg ′ ( t ) = k ( D f ( t ) ) + l ( D g ( t ) ) \begin{aligned} D(k f(t)+\lg (t))=&(k f(t)+\lg (t))^{\prime}=\\ & k f^{\prime}(t)+\lg ^{\prime}(t)=\\ & k(D f(t))+l(D g(t)) \end{aligned} D(kf(t)+lg(t))=(kf(t)+lg(t))′=kf′(t)+lg′(t)=k(Df(t))+l(Dg(t))
example 1.12 1.12 1.12 Defined in a closed interval [ a , b ] [a, b] [a,b] The set of all real continuous functions on C ( a , b ) C(a, b) C(a,b) constitute R \mathbf{R} R A linear space on . stay C ( a , b ) C(a, b) C(a,b) Define transform on J J J, namely
J ( f ( t ) ) = ∫ a t f ( u ) d u ( ∀ f ( t ) ∈ C ( a , b ) ) J(f(t))=\int_{a}^{t} f(u) \mathrm{d} u \quad(\forall f(t) \in C(a, b)) J(f(t))=∫atf(u)du(∀f(t)∈C(a,b))
be J J J yes C ( a , b ) C(a, b) C(a,b) A linear transformation of .
in fact , Because there is
J ( k f ( t ) + lg ( t ) ) = ∫ a t ( k f ( u ) + lg ( u ) ) d u = k ∫ a t f ( u ) d u + l ∫ a t g ( u ) d u = k ( J f ( t ) ) + l ( J g ( t ) ) \begin{aligned} J(k f(t)+\lg (t))=& \int_{a}^{t}(k f(u)+\lg (u)) \mathrm{d} u=\\ & k \int_{a}^{t} f(u) \mathrm{d} u+l \int_{a}^{t} g(u) \mathrm{d} u=\\ & k(J f(t))+l(J g(t)) \end{aligned} J(kf(t)+lg(t))=∫at(kf(u)+lg(u))du=k∫atf(u)du+l∫atg(u)du=k(Jf(t))+l(Jg(t))
Projection : y y y Is the unit vector ,
y y T x 1 + y y T x 2 = y y T ( x 1 + x 2 ) yy^{T}x_1+yy^{T}x_2=yy^{T}\left(x_1+x_2\right) yyTx1+yyTx2=yyT(x1+x2)
y y T ( k x 1 ) = y y T ( k x 1 ) yy^{T}\left(kx_1\right)=yy^{T}\left(kx_1\right) yyT(kx1)=yyT(kx1)
边栏推荐
- Problèmes et traitement du disque gbase 8a
- 20211108 微分跟踪器
- 20211115 任意n阶方阵均与三角矩阵(上三角或者下三角)相似
- 关于RSA加密解密原理
- Tensorflow1.14 corresponds to numpy version
- Pytorch model tuning - only some layers of the pre training model are loaded
- Map 23 summary
- Margin:0 reason why auto does not take effect
- Print an array clockwise
- 银行理财产品有哪些?清算期是多长?
猜你喜欢

transforms. ColorJitter(0.3, 0, 0, 0)

What exactly is Huawei cloud desktop saying when it says "smooth"?

Print an array clockwise

Knowledge points related to system architecture 3

Simulink的Variant Model和Variant Subsystem用法

redis

Tutorial (5.0) 01 Product introduction and installation * fortiedr * Fortinet network security expert NSE 5

Some websites of QT (software download, help documents, etc.)

QT multithreaded TCP server

20220606 关于矩阵的Young不等式
随机推荐
A very detailed blog about the implementation of bilinear interpolation by opencv
CentOS installing MySQL and setting up remote access
GBase 8a磁盤問題及處理
Simulink的Variant Model和Variant Subsystem用法
Screenshot of cesium implementation scenario
Download address of QT source code of each version
strcpy_ S precautions for use. (do not use strcpy_s where memcpy_s can be used)
Sonar scan ignores the specified file
Paging query template of Oracle
Knowledge points related to system architecture 1
[network security penetration] if you don't understand CSRF? This article gives you a thorough grasp
Bash: kill: (74001) - operation not allowed
Knowledge points related to system architecture 3
图数据库Neo4j介绍
如何成为白帽子黑客?我建议你从这几个阶段开始学习
output. Interpretation of topk() function
【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro
5. Attribute selector
Animation through svg
20211108 A转置乘A是正定矩阵吗?A转置乘A是正定矩阵的充分必要条件是什么?