当前位置:网站首页>常用随机变量的数学期望和方差

常用随机变量的数学期望和方差

2022-08-02 17:49:00 Cachel wood

0-1分布
X01
P1-PP

E ( X ) = 0 × ( 1 − p ) + 1 × p = p E ( X 2 ) = 0 2 × ( 1 − p ) + 1 2 × p = p D ( X ) = E ( X 2 ) − E 2 ( X ) = p − p 2 = p ( 1 − p ) E(X) = 0\times (1-p)+1\times p = p\\ E(X^2) = 0^2\times (1-p) + 1^2\times p = p\\ D(X) = E(X^2)-E^2(X) = p - p^2 = p(1-p)\\ E(X)=0×(1p)+1×p=pE(X2)=02×(1p)+12×p=pD(X)=E(X2)E2(X)=pp2=p(1p)

二项分布, X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

可看作n次0-1分布,设 X = X 1 + X 2 + … + X n X = X_1+X_2+…+X_n X=X1+X2++Xn
E ( X i ) = p , D ( X i ) = p ( 1 − p ) E ( X ) = n E ( X i ) = n p , D ( X ) = n D ( X i ) = n p ( 1 − p ) E(X_i) = p,D(X_i) = p(1-p)\\ E(X) = nE(X_i) = np,D(X) = nD(X_i) = np(1-p) E(Xi)=p,D(Xi)=p(1p)E(X)=nE(Xi)=np,D(X)=nD(Xi)=np(1p)

泊松分布, X ∼ P ( λ ) X\sim P(\lambda) XP(λ)

P ( X = k ) = λ k e − λ k ! , k = 0 , 1 , … E ( X ) = ∑ k = 0 + ∞ k P ( X = k ) = ∑ k = 0 + ∞ k λ k e − λ k ! = ∑ k = 1 + ∞ k λ k e − λ k ! = ∑ k = 1 + ∞ λ k e − λ ( k − 1 ) ! = ∑ k = 0 + ∞ λ k + 1 e − λ k ! = λ e − λ ∑ k = 0 + ∞ λ k k ! = λ e − λ e λ = λ E ( X 2 ) = ∑ k = 0 + ∞ k 2 P ( X = k ) = ∑ k = 0 + ∞ k 2 λ k e − λ k ! = ∑ k = 1 + ∞ k 2 λ k e − λ k ! = ∑ k = 1 + ∞ k λ k e − λ ( k − 1 ) ! = ∑ k = 0 + ∞ ( k + 1 ) λ k + 1 e − λ k ! = ∑ k = 0 + ∞ k λ k + 1 e − λ k ! + ∑ k = 0 + ∞ λ k + 1 e − λ k ! = ∑ k = 1 + ∞ λ k + 1 e − λ ( k − 1 ) ! + ∑ k = 0 + ∞ λ k + 1 e − λ k ! = ∑ k = 0 + ∞ λ k + 2 e − λ k ! + ∑ k = 0 + ∞ λ k + 1 e − λ k ! = λ 2 e − λ ∑ k = 0 + ∞ λ k k ! + λ e − λ ∑ k = 0 + ∞ λ k k ! = λ 2 e − λ e λ + λ e − λ e λ = λ 2 + λ D ( X ) = E ( X 2 ) − E 2 ( X ) = λ 2 + λ − λ 2 = λ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!},k=0,1,…\\ E(X) = \sum_{k=0}^{+\infty}kP(X=k) = \sum_{k=0}^{+\infty}k\frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty}k\frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty}\frac{\lambda^k e^{-\lambda}}{(k-1)!} = \sum_{k=0}^{+\infty}\frac{\lambda^{k+1} e^{-\lambda}}{k!} =\lambda e^{-\lambda}\sum_{k=0}^{+\infty}\frac{\lambda^{k} }{k!} = \lambda e^{-\lambda}e^{\lambda} = \lambda\\ E(X^2) = \sum_{k=0}^{+\infty}k^2P(X=k) = \sum_{k=0}^{+\infty}k^2\frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty}k^2\frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty}k\frac{\lambda^k e^{-\lambda}}{(k-1)!} = \sum_{k=0}^{+\infty}(k+1)\frac{\lambda^{k+1} e^{-\lambda}}{k!} =\sum_{k=0}^{+\infty}k\frac{\lambda^{k+1} e^{-\lambda}}{k!}+\sum_{k=0}^{+\infty}\frac{\lambda^{k+1} e^{-\lambda}}{k!}=\sum_{k=1}^{+\infty}\frac{\lambda^{k+1} e^{-\lambda}}{(k-1)!}+\sum_{k=0}^{+\infty}\frac{\lambda^{k+1}e^{-\lambda}}{k!}=\sum_{k=0}^{+\infty}\frac{\lambda^{k+2} e^{-\lambda}}{k!}+\sum_{k=0}^{+\infty}\frac{\lambda^{k+1}e^{-\lambda}}{k!}=\lambda^2 e^{-\lambda}\sum_{k=0}^{+\infty}\frac{\lambda^{k} }{k!}+\lambda e^{-\lambda}\sum_{k=0}^{+\infty}\frac{\lambda^{k} }{k!} = \lambda^2 e^{-\lambda}e^{\lambda} +\lambda e^{-\lambda}e^{\lambda}= \lambda^2+\lambda \\ D(X) = E(X^2)-E^2(X) = \lambda^2 + \lambda - \lambda^2 = \lambda P(X=k)=k!λkeλ,k=0,1,E(X)=k=0+kP(X=k)=k=0+kk!λkeλ=k=1+kk!λkeλ=k=1+(k1)!λkeλ=k=0+k!λk+1eλ=λeλk=0+k!λk=λeλeλ=λE(X2)=k=0+k2P(X=k)=k=0+k2k!λkeλ=k=1+k2k!λkeλ=k=1+k(k1)!λkeλ=k=0+(k+1)k!λk+1eλ=k=0+kk!λk+1eλ+k=0+k!λk+1eλ=k=1+(k1)!λk+1eλ+k=0+k!λk+1eλ=k=0+k!λk+2eλ+k=0+k!λk+1eλ=λ2eλk=0+k!λk+λeλk=0+k!λk=λ2eλeλ+λeλeλ=λ2+λD(X)=E(X2)E2(X)=λ2+λλ2=λ

几何分布 P ( X = k ) = p ( 1 − p ) k − 1 , k = 1 , 2 , … , 0 < p < 1 P(X=k) =p(1-p)^{k-1},k=1,2,…,0<p<1 P(X=k)=p(1p)k1,k=1,2,,0<p<1

E ( X ) = ∑ k = 1 + ∞ k P ( X = k ) = ∑ k = 1 + ∞ k p ( 1 − p ) k − 1 = p ∑ k = 1 + ∞ k ( 1 − p ) k − 1 = p [ ∑ k = 1 + ∞ ( 1 − p ) k ] ′ = p [ 1 − p 1 − ( 1 − p ) ] ′ = p ( x 1 − x ) ′ = p 1 ( 1 − x ) 2 = 1 p E ( X 2 ) = ∑ k = 1 + ∞ k 2 P ( X = k ) = ∑ k = 1 + ∞ k 2 p ( 1 − p ) k − 1 = p ∑ k = 1 + ∞ k 2 ( 1 − p ) k − 1 = p ∑ k = 1 + ∞ ( k 2 + k − k ) ( 1 − p ) k − 1 = p ∑ k = 1 + ∞ [ k ( k + 1 ) − k ] ( 1 − p ) k − 1 = p [ ∑ k = 1 + ∞ ( 1 − p ) k + 1 ] ′ ′ − p [ ∑ k = 1 + ∞ ( 1 − p ) k ] ′ = p [ ( 1 − p ) 2 1 − ( 1 − p ) ] ′ ′ − E ( X ) = 1 − p p 2 E(X) = \sum_{k=1}^{+\infty} kP(X=k) = \sum_{k=1}^{+\infty} kp(1-p)^{k-1} = p\sum_{k=1}^{+\infty} k(1-p)^{k-1} = p[\sum_{k=1}^{+\infty} (1-p)^k]^{\prime} = p[\frac{1-p}{1-(1-p)}]^{\prime} = p(\frac{x}{1-x})^{\prime} = p\frac{1}{(1-x)^2} =\frac{1}{p}\\ E(X^2) = \sum_{k=1}^{+\infty} k^2P(X=k) = \sum_{k=1}^{+\infty} k^2p(1-p)^{k-1} = p\sum_{k=1}^{+\infty} k^2(1-p)^{k-1} =p\sum_{k=1}^{+\infty} (k^2+k-k)(1-p)^{k-1}= p\sum_{k=1}^{+\infty} [k(k+1)-k](1-p)^{k-1}=p[\sum_{k=1}^{+\infty}(1-p)^{k+1}]^{\prime \prime } - p[\sum_{k=1}^{+\infty} (1-p)^k]^{\prime } = p[\frac{(1-p)^2}{1-(1-p)}]^{\prime \prime}-E(X) = \frac{1-p}{p^2}\\ E(X)=k=1+kP(X=k)=k=1+kp(1p)k1=pk=1+k(1p)k1=p[k=1+(1p)k]=p[1(1p)1p]=p(1xx)=p(1x)21=p1E(X2)=k=1+k2P(X=k)=k=1+k2p(1p)k1=pk=1+k2(1p)k1=pk=1+(k2+kk)(1p)k1=pk=1+[k(k+1)k](1p)k1=p[k=1+(1p)k+1]′′p[k=1+(1p)k]=p[1(1p)(1p)2]′′E(X)=p21p

均匀分布 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)

f X ( x ) = 1 b − a , a < x < b E ( X ) = ∫ a b x b − a d x = a + b 2 E ( X 2 ) = ∫ a b x 2 b − a d x = a 2 + a b + b 2 3 D ( X ) = a 2 + a b + b 2 3 − ( a + b 2 ) 2 = ( b − a ) 2 12 f_X(x) = \frac{1}{b-a},a<x<b\\ E(X) = \int_{a}^b \frac{x}{b-a}dx = \frac{a+b}{2}\\ E(X^2) = \int_{a}^b \frac{x^2}{b-a}dx = \frac{a^2+ab+b^2}{3}\\ D(X) = \frac{a^2+ab+b^2}{3}-(\frac{a+b}{2})^2 = \frac{(b-a)^2}{12} fX(x)=ba1,a<x<bE(X)=abbaxdx=2a+bE(X2)=abbax2dx=3a2+ab+b2D(X)=3a2+ab+b2(2a+b)2=12(ba)2

指数分布, X ∼ E ( λ ) X\sim E(\lambda) XE(λ),利用伽马函数的性质

f X ( x ) = λ e − λ x , x ≥ 0 E ( X ) = ∫ 0 + ∞ x f ( x ) d x = ∫ 0 + ∞ λ x e − λ x d x = 1 λ ∫ 0 + ∞ ( λ x ) e − ( λ x ) d ( λ x ) = T ( 2 ) λ = 1 λ E ( X 2 ) = ∫ 0 + ∞ x 2 f ( x ) d x = ∫ 0 + ∞ λ x 2 e − λ x d x = 1 λ 2 ∫ 0 + ∞ ( λ x ) 2 e − ( λ x ) d ( λ x ) = T ( 3 ) λ 2 = 2 λ 2 D ( X ) = 2 λ 2 − 1 λ 2 = 1 λ 2 f_X(x) = \lambda e^{-\lambda x},x\geq 0\\ E(X) = \int_{0}^{+\infty}xf(x)dx = \int_{0}^{+\infty}\lambda x e^{-\lambda x}dx = \frac{1}{\lambda} \int_{0}^{+\infty}(\lambda x) e^{-(\lambda x)}d(\lambda x) = \frac{T(2)}{\lambda} = \frac{1}{\lambda}\\ E(X^2) = \int_{0}^{+\infty}x^2f(x)dx = \int_{0}^{+\infty}\lambda x^2 e^{-\lambda x}dx = \frac{1}{\lambda^2} \int_{0}^{+\infty}(\lambda x)^2 e^{-(\lambda x)}d(\lambda x) = \frac{T(3)}{\lambda^2} = \frac{2}{\lambda^2}\\ D(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} fX(x)=λeλx,x0E(X)=0+xf(x)dx=0+λxeλxdx=λ10+(λx)e(λx)d(λx)=λT(2)=λ1E(X2)=0+x2f(x)dx=0+λx2eλxdx=λ210+(λx)2e(λx)d(λx)=λ2T(3)=λ22D(X)=λ22λ21=λ21

正态分布, X ∼ N ( μ , σ ) X\sim N(\mu,\sigma^) XN(μ,σ)

f X ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , x ∈ R E ( X ) = ∫ − ∞ + ∞ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = ∫ − ∞ + ∞ ( x − μ ) 1 2 π σ e − ( x − μ ) 2 2 σ 2 d ( x − μ ) + ∫ − ∞ + ∞ μ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 0 + μ = μ D ( X ) = E ( X − E X ) 2 = E ( X − μ ) 2 = ∫ − ∞ + ∞ ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x 令 u = x − μ 2 σ D ( X ) = 2 σ ∫ − ∞ + ∞ 2 σ 2 2 π σ u 2 e − u 2 d u = 2 σ 2 π ∫ − ∞ + ∞ u 2 e − u 2 d u = 2 σ 2 π ⋅ π 2 = σ 2 f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},x\in R\\ E(X) =\int_{-\infty}^{+\infty} x\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx = \int_{-\infty}^{+\infty} (x-\mu)\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}d(x-\mu) +\int_{-\infty}^{+\infty} \mu\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx = 0 + \mu = \mu \\ D(X) = E(X-EX)^2 = E(X-\mu)^2 = \int_{-\infty}^{+\infty} (x-\mu)^2\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx \\ 令 u = \frac{x-\mu}{\sqrt{2}\sigma}\\ D(X) = \sqrt{2}\sigma\int_{-\infty}^{+\infty} \frac{2\sigma^2}{\sqrt{2\pi}\sigma} u^2e^{-u^2}du =\frac{2\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty} u^2e^{-u^2}du = \frac{2\sigma^2}{\sqrt{\pi}}·\frac{\sqrt{\pi}}{2} = \sigma^2\\ fX(x)=2πσ1e2σ2(xμ)2,xRE(X)=+x2πσ1e2σ2(xμ)2dx=+(xμ)2πσ1e2σ2(xμ)2d(xμ)++μ2πσ1e2σ2(xμ)2dx=0+μ=μD(X)=E(XEX)2=E(Xμ)2=+(xμ)22πσ1e2σ2(xμ)2dxu=2σxμD(X)=2σ+2πσ2σ2u2eu2du=π2σ2+u2eu2du=π2σ22π=σ2

原网站

版权声明
本文为[Cachel wood]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_46530492/article/details/126066395