当前位置:网站首页>多元线性回归(梯度下降法)
多元线性回归(梯度下降法)
2022-07-05 08:42:00 【python-码博士】
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 读取数据
data = np.loadtxt('Delivery.csv',delimiter=',')
print(data)
# 构造特征x,目标y
# 特征
x_data = data[:,0:-1]
y_data = data[:,-1]
# 初始化学习率 (步长)
learning_rate = 0.0001
# 初始化 截距
theta0 = 0
# 初始化 系数
theta1 = 0
theta2 = 0
# 初始化最大迭代次数
n_iterables = 100
def compute_mse(theta0,theta1,theta2,x_data,y_data):
''' 计算代价函数 '''
total_error = 0
for i in range(len(x_data)):
# 计算损失 (真实值-预测值)**2
total_error += (y_data[i]-(theta0 + theta1*x_data[i,0]+theta2*x_data[i,1]))**2
mse_ = total_error/len(x_data)/2
return mse_
def gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables):
''' 梯度下降法 '''
m = len(x_data)
# 循环
for i in range(n_iterables):
# 初始化theta0,theta1,theta2偏导数
theta0_grad = 0
theta1_grad = 0
theta2_grad = 0
# 计算偏导的总和再平均
# 遍历m次
for j in range(m):
theta0_grad += (1/m)*((theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)-y_data[j])
theta1_grad += (1/m)*((theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)-y_data[j])*x_data[j,0]
theta2_grad += (1/m)*((theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)-y_data[j])*x_data[j,1]
# 更新theta
theta0 = theta0 - (learning_rate*theta0_grad)
theta1 = theta1 - (learning_rate*theta1_grad)
theta2 = theta2 - (learning_rate*theta2_grad)
return theta0,theta1,theta2
# 可视化分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)
plt.show()
print(f"开始:截距theta0={
theta0},theta1={
theta1},theta2={
theta2},损失={
compute_mse(theta0,theta1,theta2,x_data,y_data)}")
print("开始跑起来了~")
theta0,theta1,theta2 = gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables)
print(f"迭代{
n_iterables}次后:截距theta0={
theta0},theta1={
theta1},theta2={
theta2},损失={
compute_mse(theta0,theta1,theta2,x_data,y_data)}")
# 绘制预期平面
x_0 = x_data[:,0]
x_1 = x_data[:,1]
# 生成网格矩阵
x_0,x_1 = np.meshgrid(x_0,x_1)
# y
y_hat = theta0 + theta1*x_0 +theta2*x_1
ax.plot_surface(x_0,x_1,y_hat)
# 设置标签
ax.set_xlabel('Miles')
ax.set_ylabel('nums')
ax.set_zlabel('Time')
plt.show()
边栏推荐
- Task failed task_ 1641530057069_ 0002_ m_ 000000
- 实例003:完全平方数 一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?
- 图解八道经典指针笔试题
- 猜谜语啦(142)
- [formation quotidienne - Tencent Selection 50] 557. Inverser le mot III dans la chaîne
- Digital analog 2: integer programming
- Example 005: three numbers sorting input three integers x, y, Z, please output these three numbers from small to large.
- 猜谜语啦(8)
- Basic number theory -- Euler function
- U8g2 drawing
猜你喜欢

Guess riddles (6)
![[three tier architecture]](/img/73/c4c75a453f03830e83cabb0762eb9b.png)
[three tier architecture]

Redis实现高性能的全文搜索引擎---RediSearch

Meizu Bluetooth remote control temperature and humidity access homeassistant

Halcon clolor_ pieces. Hedv: classifier_ Color recognition

【三层架构】

Illustration of eight classic pointer written test questions

TypeScript手把手教程,简单易懂

319. Bulb switch

猜谜语啦(9)
随机推荐
Run菜单解析
Guess riddles (7)
Search data in geo database
猜谜语啦(2)
Halcon clolor_ pieces. Hedv: classifier_ Color recognition
【日常训练--腾讯精选50】557. 反转字符串中的单词 III
287. Looking for repeats - fast and slow pointer
Guess riddles (2)
Business modeling | process of software model
Arduino operation stm32
ABC#237 C
Example 010: time to show
Infix expression evaluation
319. Bulb switch
猜谜语啦(7)
U8g2 drawing
Example 004: for the day of the day, enter a day of a month of a year to judge the day of the year?
Guess riddles (5)
Mathematical modeling: factor analysis
Example 007: copy data from one list to another list.