当前位置:网站首页>[control] multi agent system summary. 1. system model. 2. control objectives. 3. model transformation.
[control] multi agent system summary. 1. system model. 2. control objectives. 3. model transformation.
2022-06-30 04:36:00 【Zhao-Jichao】
【 control 】 Summary of multi-agent system .1. System model .2. Control objectives .3. Model transformation .
【 control 】 Summary of multi-agent system .4. Control agreement .
【 control 】 Summary of multi-agent system .5. System merge .
List of articles
1. System model
1.1 First order one-dimensional system
{ p ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = u_i \\ \end{aligned}\right. \tag{} { p˙i=ui()
1.2 First order two-dimensional system
{ p ˙ i = v i v ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = v_i \\ \dot{v}_i & = u_i \\ \end{aligned}\right. \tag{} { p˙iv˙i=vi=ui()
1.3 Second order one-dimensional system
{ p ˙ i x = u i x p ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = u_i^x \\ \dot{p}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} { p˙ixp˙iy=uix=uiy()
1.4 Second order two-dimensional system
{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = v_i^x \\ \dot{p}_i^y & = v_i^y \\ \dot{v}_i^x & = u_i^x \\ \dot{v}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()
2. Control objectives
The control target is the final state of all agents
2.1 First order one-dimensional system
lim t → ∞ ∥ p j − p i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥=0()
2.2 First order two-dimensional system
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥=0=0()
2.3 Second order one-dimensional system
lim t → ∞ ∥ p j − p i ∥ = 0 lim t → ∞ ∥ v j − v i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j - v_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥t→∞lim∥vj−vi∥=0=0()
2.4 Second order two-dimensional system
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 lim t → ∞ ∥ v j x − v i x ∥ = 0 lim t → ∞ ∥ v j y − v i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^x - v_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^y - v_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥t→∞lim∥vjx−vix∥t→∞lim∥vjy−viy∥=0=0=0=0()
3. Model transformation
3.1 First order one-dimensional system
The system model of a single agent is
[ p ˙ i ] = [ 0 ] [ p i ] + [ 1 ] [ u i ] = 0 ⋅ X + 1 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ \end{matrix}\right] + \left[\begin{matrix} 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \\ &= 0 \cdot X + 1 \cdot U \end{aligned} \tag{} [p˙i]=[0][pi]+[1][ui]=0⋅X+1⋅U()
The system model of multiple agents is
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = [ 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 ] + [ 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = 0 N × N ⋅ X + I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{0_{N \times N} \cdot X + I_N \cdot U} \end{aligned} \tag{} ⎣⎡p˙1p˙2p˙3⎦⎤=⎣⎡000000000⎦⎤⎣⎡p1p2p3⎦⎤+⎣⎡100010001⎦⎤⎣⎡u1u2u3⎦⎤=0N×N⋅X+IN⋅U()
3.2 First order two-dimensional system
The system model of a single agent is
[ p ˙ i x p ˙ i y ] = [ 0 0 0 0 ] [ p i x p i y ] + [ 1 0 0 1 ] [ u i x u i y ] = 0 2 × 2 ⋅ X + I 2 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i^x \\ \dot{p}_i^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= 0_{2\times 2} \cdot X + I_2 \cdot U \end{aligned} \tag{} [p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2⋅X+I2⋅U()
3.2.1 Mode one
The system model of multiple agents is
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y p 2 x p 2 y p 3 x p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ p_2^x \\ p_2^y \\ p_3^x \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp1yp2xp2yp3xp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.2.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.3 Second order one-dimensional system
The system model of a single agent is
[ p ˙ i v ˙ i ] = [ 0 1 0 0 ] [ p i v i ] + [ 0 1 ] [ u i ] ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \dot{v}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ v_i \\ \end{matrix}\right] + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \end{aligned} \tag{} [p˙iv˙i]=[0010][pivi]+[01][ui]()
3.3.1 Mode one
The system model of multiple agents is
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ] [ p 1 v 1 p 2 v 2 p 3 v 3 ] + [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 u 2 u 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ v_1 \\ p_2 \\ v_2 \\ p_3 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1v˙1p˙2v˙2p˙3v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000100000000000001000000000000010⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1v1p2v2p3v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡010000000100000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=IN⊗[0010]⋅X+IN⊗[01]⋅U()
3.3.2 Mode two
The system model of multiple agents is
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 v 1 v 2 v 3 ] + [ 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = [ 0 N × N I N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N I N ] ⋅ U = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ v_1 \\ v_2 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & I_N \\ 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} \\ I_N \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1p˙2p˙3v˙1v˙2v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000100000010000001000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1p2p3v1v2v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=[0N×N0N×NIN0N×N]⋅X+[0N×NIN]⋅U=[0010]⊗IN⋅X+[01]⊗IN⋅U()
3.4 Second order two-dimensional system
The system model of a single agent is
[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) \begin{aligned} \left[\begin{matrix} \dot{p}^x_i \\ \dot{p}^y_i \\ \dot{v}^x_i \\ \dot{v}^y_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ v_i^x \\ v_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= a \otimes I_2 \cdot X_i + b \otimes I_2 \cdot U_i \end{aligned} \tag{} ⎣⎢⎢⎡p˙ixp˙iyv˙ixv˙iy⎦⎥⎥⎤=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⎣⎢⎢⎡pixpiyvixviy⎦⎥⎥⎤+⎣⎢⎢⎡00100001⎦⎥⎥⎤[uixuiy]=a⊗I2⋅Xi+b⊗I2⋅Ui()
3.4.1 Mode one
The system model of multiple agents is
[ p ˙ 1 x p ˙ 1 y v ˙ 1 x v ˙ 1 y p ˙ 2 x p ˙ 2 y v ˙ 2 x v ˙ 2 y p ˙ 3 x p ˙ 3 y v ˙ 3 x v ˙ 3 y ] = [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y v 1 x v 1 y p 2 x p 2 y v 2 x v 2 y p 3 x p 3 y v 3 x v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = I N ⊗ [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⋅ X + I N ⊗ [ 0 0 0 0 1 0 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{v}_1^x \\ \dot{v}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{v}_2^x \\ \dot{v}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \dot{v}_3^x \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ v_1^x \\ v_1^y \\ p_2^x \\ p_2^y \\ v_2^x \\ v_2^y \\ p_3^x \\ p_3^y \\ v_3^x \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡001000000000000100000000000000100000000000010000000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=IN⊗⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⋅X+IN⊗⎣⎢⎢⎡00100001⎦⎥⎥⎤⋅U()
3.4.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y v 1 x v 2 x v 3 x v 1 y v 2 y v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = [ 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N I N ] ⋅ U = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ v_1^x \\ v_2^x \\ v_3^x \\ v_1^y \\ v_2^y \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} & I_N & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & I_{N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} \\ I_{N} & 0_{N\times N} \\ 0_{N\times N} & I_{N} \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000100000000000010000000000001000000000000100000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×N⎦⎥⎥⎤⋅X+⎣⎢⎢⎡0N×N0N×NIN0N×N0N×N0N×N0N×NIN⎦⎥⎥⎤⋅U=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⊗IN⋅X+⎣⎢⎢⎡00100001⎦⎥⎥⎤⊗IN⋅U()
边栏推荐
- Refers to the difference between IP and *ip at output
- Network layer protocol hardware
- Dual domain SSL certificate
- Create thread in callable mode
- Redis implements SMS login function (I) traditional session login
- Es2018 key summary
- 数据链路层详解
- Myrpc version 0
- My idea configuration
- Paging query, using jdbc-- paging query
猜你喜欢

Software digital signature certificate

Imile uses Zadig's multi cloud environment to deploy thousands of times a week to continuously deliver global business across clouds and regions

Window10 jar double click to run without response

Myrpc version 1

进程间通信之匿名管道

Learn about threads

What is an optocoupler circuit and what should be paid attention to in actual use?

A solution to the problem of "couldn't open file /mnt/repodata/repomd.xml"
![[UAV] kinematic analysis from single propeller to four rotor UAV](/img/32/1a88b102f832ffbbc1a7e57798260a.jpg)
[UAV] kinematic analysis from single propeller to four rotor UAV

Sectigo certificate
随机推荐
Differences between beanfactory and factorybean
【Paper】2016_ A Learning-Based Fault Tolerant Tracking Control of an Unmanned Quadrotor Helicopter
输入输出及中断技术——微机第六章学习笔记
[FPGA] IIC读写EEPROM 的实现
Es2018 key summary
Anonymous pipeline for interprocess communication
Default value of JS parameter
Named pipes for interprocess communication
Transport layer protocol tcp/udp
Code cloud fatal: authentication failed for
Paging query, using jdbc-- paging query
Differences between cookies and sessions
Explain the underlying principles of JVM garbage collection in simple terms
Implementation steps of dynamic proxy
Myrpc version 6
进程间通信之匿名管道
SSL universal domain name certificate
Interview topic of MySQL
Input / output and interrupt technology -- microcomputer Chapter 6 learning notes
How the FortiGate firewall rejects a port by using the local in policy policy