当前位置:网站首页>[control] multi agent system summary. 1. system model. 2. control objectives. 3. model transformation.
[control] multi agent system summary. 1. system model. 2. control objectives. 3. model transformation.
2022-06-30 04:36:00 【Zhao-Jichao】
【 control 】 Summary of multi-agent system .1. System model .2. Control objectives .3. Model transformation .
【 control 】 Summary of multi-agent system .4. Control agreement .
【 control 】 Summary of multi-agent system .5. System merge .
List of articles
1. System model
1.1 First order one-dimensional system
{ p ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = u_i \\ \end{aligned}\right. \tag{} { p˙i=ui()
1.2 First order two-dimensional system
{ p ˙ i = v i v ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = v_i \\ \dot{v}_i & = u_i \\ \end{aligned}\right. \tag{} { p˙iv˙i=vi=ui()
1.3 Second order one-dimensional system
{ p ˙ i x = u i x p ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = u_i^x \\ \dot{p}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} { p˙ixp˙iy=uix=uiy()
1.4 Second order two-dimensional system
{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = v_i^x \\ \dot{p}_i^y & = v_i^y \\ \dot{v}_i^x & = u_i^x \\ \dot{v}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()
2. Control objectives
The control target is the final state of all agents
2.1 First order one-dimensional system
lim t → ∞ ∥ p j − p i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥=0()
2.2 First order two-dimensional system
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥=0=0()
2.3 Second order one-dimensional system
lim t → ∞ ∥ p j − p i ∥ = 0 lim t → ∞ ∥ v j − v i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j - v_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥t→∞lim∥vj−vi∥=0=0()
2.4 Second order two-dimensional system
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 lim t → ∞ ∥ v j x − v i x ∥ = 0 lim t → ∞ ∥ v j y − v i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^x - v_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^y - v_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥t→∞lim∥vjx−vix∥t→∞lim∥vjy−viy∥=0=0=0=0()
3. Model transformation
3.1 First order one-dimensional system
The system model of a single agent is
[ p ˙ i ] = [ 0 ] [ p i ] + [ 1 ] [ u i ] = 0 ⋅ X + 1 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ \end{matrix}\right] + \left[\begin{matrix} 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \\ &= 0 \cdot X + 1 \cdot U \end{aligned} \tag{} [p˙i]=[0][pi]+[1][ui]=0⋅X+1⋅U()
The system model of multiple agents is
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = [ 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 ] + [ 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = 0 N × N ⋅ X + I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{0_{N \times N} \cdot X + I_N \cdot U} \end{aligned} \tag{} ⎣⎡p˙1p˙2p˙3⎦⎤=⎣⎡000000000⎦⎤⎣⎡p1p2p3⎦⎤+⎣⎡100010001⎦⎤⎣⎡u1u2u3⎦⎤=0N×N⋅X+IN⋅U()
3.2 First order two-dimensional system
The system model of a single agent is
[ p ˙ i x p ˙ i y ] = [ 0 0 0 0 ] [ p i x p i y ] + [ 1 0 0 1 ] [ u i x u i y ] = 0 2 × 2 ⋅ X + I 2 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i^x \\ \dot{p}_i^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= 0_{2\times 2} \cdot X + I_2 \cdot U \end{aligned} \tag{} [p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2⋅X+I2⋅U()
3.2.1 Mode one
The system model of multiple agents is
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y p 2 x p 2 y p 3 x p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ p_2^x \\ p_2^y \\ p_3^x \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp1yp2xp2yp3xp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.2.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.3 Second order one-dimensional system
The system model of a single agent is
[ p ˙ i v ˙ i ] = [ 0 1 0 0 ] [ p i v i ] + [ 0 1 ] [ u i ] ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \dot{v}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ v_i \\ \end{matrix}\right] + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \end{aligned} \tag{} [p˙iv˙i]=[0010][pivi]+[01][ui]()
3.3.1 Mode one
The system model of multiple agents is
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ] [ p 1 v 1 p 2 v 2 p 3 v 3 ] + [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 u 2 u 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ v_1 \\ p_2 \\ v_2 \\ p_3 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1v˙1p˙2v˙2p˙3v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000100000000000001000000000000010⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1v1p2v2p3v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡010000000100000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=IN⊗[0010]⋅X+IN⊗[01]⋅U()
3.3.2 Mode two
The system model of multiple agents is
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 v 1 v 2 v 3 ] + [ 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = [ 0 N × N I N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N I N ] ⋅ U = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ v_1 \\ v_2 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & I_N \\ 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} \\ I_N \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1p˙2p˙3v˙1v˙2v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000100000010000001000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1p2p3v1v2v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=[0N×N0N×NIN0N×N]⋅X+[0N×NIN]⋅U=[0010]⊗IN⋅X+[01]⊗IN⋅U()
3.4 Second order two-dimensional system
The system model of a single agent is
[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) \begin{aligned} \left[\begin{matrix} \dot{p}^x_i \\ \dot{p}^y_i \\ \dot{v}^x_i \\ \dot{v}^y_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ v_i^x \\ v_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= a \otimes I_2 \cdot X_i + b \otimes I_2 \cdot U_i \end{aligned} \tag{} ⎣⎢⎢⎡p˙ixp˙iyv˙ixv˙iy⎦⎥⎥⎤=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⎣⎢⎢⎡pixpiyvixviy⎦⎥⎥⎤+⎣⎢⎢⎡00100001⎦⎥⎥⎤[uixuiy]=a⊗I2⋅Xi+b⊗I2⋅Ui()
3.4.1 Mode one
The system model of multiple agents is
[ p ˙ 1 x p ˙ 1 y v ˙ 1 x v ˙ 1 y p ˙ 2 x p ˙ 2 y v ˙ 2 x v ˙ 2 y p ˙ 3 x p ˙ 3 y v ˙ 3 x v ˙ 3 y ] = [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y v 1 x v 1 y p 2 x p 2 y v 2 x v 2 y p 3 x p 3 y v 3 x v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = I N ⊗ [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⋅ X + I N ⊗ [ 0 0 0 0 1 0 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{v}_1^x \\ \dot{v}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{v}_2^x \\ \dot{v}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \dot{v}_3^x \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ v_1^x \\ v_1^y \\ p_2^x \\ p_2^y \\ v_2^x \\ v_2^y \\ p_3^x \\ p_3^y \\ v_3^x \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡001000000000000100000000000000100000000000010000000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=IN⊗⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⋅X+IN⊗⎣⎢⎢⎡00100001⎦⎥⎥⎤⋅U()
3.4.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y v 1 x v 2 x v 3 x v 1 y v 2 y v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = [ 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N I N ] ⋅ U = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ v_1^x \\ v_2^x \\ v_3^x \\ v_1^y \\ v_2^y \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} & I_N & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & I_{N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} \\ I_{N} & 0_{N\times N} \\ 0_{N\times N} & I_{N} \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000100000000000010000000000001000000000000100000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×N⎦⎥⎥⎤⋅X+⎣⎢⎢⎡0N×N0N×NIN0N×N0N×N0N×N0N×NIN⎦⎥⎥⎤⋅U=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⊗IN⋅X+⎣⎢⎢⎡00100001⎦⎥⎥⎤⊗IN⋅U()
边栏推荐
- Matlab reads fig file and restores signal
- 【WEBRTC】ADM: rtc_include_internal_audio_device 触发 RTC_DCHECK(adm) 断言
- Qt Creator 8 Beta2发布
- IO stream, character read / write, copy
- The most comprehensive summary notes of redis foundation + advanced project in history
- Blocking queue example
- Qt6 QML Book/Qt Quick 3D/Qt Quick 3D
- Differences between cookies and sessions
- Requirements for transfer transaction cases: 1 Employee 1 transfers money to employee 2. Therefore, two update sals should be executed. Purpose: either both updates are successful or both implementati
- One interview question every day to talk about the process of TCP connection and disconnection
猜你喜欢

Dual domain SSL certificate

Learn about threads

Geotrustov wildcard

Blocking queue example
![[FPGA] IIC读写EEPROM 的实现](/img/6a/36e9355058a90d98cffafcbaa1930b.png)
[FPGA] IIC读写EEPROM 的实现

Input / output and interrupt technology -- microcomputer Chapter 6 learning notes

Es2017 key summary

Threejs实现模拟河流,水面水流,水管水流,海面

Method of applying for code signing certificate by enterprise

Redis sentry, persistence, master-slave, hand tear LRU
随机推荐
7-3 single source shortest circuit for strange play upgrade
Redis实现短信登入功能(一)传统的Session登入
Create thread in callable mode
Iterator of JS
Differences between cookies and sessions
How to apply for SSL certificate from the manufacturer
Blocking queue example
One interview question a day - the underlying implementation of synchronize and the lock upgrade process
[从零开始学习FPGA编程-52]:高阶篇 - 基于IP核的FPGA开发 - IP核使用的基本框架(以锁相环PLL为例)
Foreign SSL certificate
How to use div boxes to simulate line triangles
网络层详解
Difference between TCP three handshakes and four waves and tcp/udp
Equity interest [non DP]
Intern method of string
管道实现进程间通信之命名管道
Websocket implementation principle
Default value of JS parameter
Servlet lifecycle
JS deconstruction assignment