当前位置:网站首页>[control] multi agent system summary. 1. system model. 2. control objectives. 3. model transformation.
[control] multi agent system summary. 1. system model. 2. control objectives. 3. model transformation.
2022-06-30 04:36:00 【Zhao-Jichao】
【 control 】 Summary of multi-agent system .1. System model .2. Control objectives .3. Model transformation .
【 control 】 Summary of multi-agent system .4. Control agreement .
【 control 】 Summary of multi-agent system .5. System merge .
List of articles
1. System model
1.1 First order one-dimensional system
{ p ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = u_i \\ \end{aligned}\right. \tag{} { p˙i=ui()
1.2 First order two-dimensional system
{ p ˙ i = v i v ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = v_i \\ \dot{v}_i & = u_i \\ \end{aligned}\right. \tag{} { p˙iv˙i=vi=ui()
1.3 Second order one-dimensional system
{ p ˙ i x = u i x p ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = u_i^x \\ \dot{p}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} { p˙ixp˙iy=uix=uiy()
1.4 Second order two-dimensional system
{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = v_i^x \\ \dot{p}_i^y & = v_i^y \\ \dot{v}_i^x & = u_i^x \\ \dot{v}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()
2. Control objectives
The control target is the final state of all agents
2.1 First order one-dimensional system
lim t → ∞ ∥ p j − p i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥=0()
2.2 First order two-dimensional system
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥=0=0()
2.3 Second order one-dimensional system
lim t → ∞ ∥ p j − p i ∥ = 0 lim t → ∞ ∥ v j − v i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j - v_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥t→∞lim∥vj−vi∥=0=0()
2.4 Second order two-dimensional system
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 lim t → ∞ ∥ v j x − v i x ∥ = 0 lim t → ∞ ∥ v j y − v i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^x - v_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^y - v_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥t→∞lim∥vjx−vix∥t→∞lim∥vjy−viy∥=0=0=0=0()
3. Model transformation
3.1 First order one-dimensional system
The system model of a single agent is
[ p ˙ i ] = [ 0 ] [ p i ] + [ 1 ] [ u i ] = 0 ⋅ X + 1 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ \end{matrix}\right] + \left[\begin{matrix} 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \\ &= 0 \cdot X + 1 \cdot U \end{aligned} \tag{} [p˙i]=[0][pi]+[1][ui]=0⋅X+1⋅U()
The system model of multiple agents is
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = [ 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 ] + [ 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = 0 N × N ⋅ X + I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{0_{N \times N} \cdot X + I_N \cdot U} \end{aligned} \tag{} ⎣⎡p˙1p˙2p˙3⎦⎤=⎣⎡000000000⎦⎤⎣⎡p1p2p3⎦⎤+⎣⎡100010001⎦⎤⎣⎡u1u2u3⎦⎤=0N×N⋅X+IN⋅U()
3.2 First order two-dimensional system
The system model of a single agent is
[ p ˙ i x p ˙ i y ] = [ 0 0 0 0 ] [ p i x p i y ] + [ 1 0 0 1 ] [ u i x u i y ] = 0 2 × 2 ⋅ X + I 2 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i^x \\ \dot{p}_i^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= 0_{2\times 2} \cdot X + I_2 \cdot U \end{aligned} \tag{} [p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2⋅X+I2⋅U()
3.2.1 Mode one
The system model of multiple agents is
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y p 2 x p 2 y p 3 x p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ p_2^x \\ p_2^y \\ p_3^x \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp1yp2xp2yp3xp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.2.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.3 Second order one-dimensional system
The system model of a single agent is
[ p ˙ i v ˙ i ] = [ 0 1 0 0 ] [ p i v i ] + [ 0 1 ] [ u i ] ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \dot{v}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ v_i \\ \end{matrix}\right] + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \end{aligned} \tag{} [p˙iv˙i]=[0010][pivi]+[01][ui]()
3.3.1 Mode one
The system model of multiple agents is
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ] [ p 1 v 1 p 2 v 2 p 3 v 3 ] + [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 u 2 u 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ v_1 \\ p_2 \\ v_2 \\ p_3 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1v˙1p˙2v˙2p˙3v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000100000000000001000000000000010⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1v1p2v2p3v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡010000000100000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=IN⊗[0010]⋅X+IN⊗[01]⋅U()
3.3.2 Mode two
The system model of multiple agents is
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 v 1 v 2 v 3 ] + [ 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = [ 0 N × N I N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N I N ] ⋅ U = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ v_1 \\ v_2 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & I_N \\ 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} \\ I_N \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1p˙2p˙3v˙1v˙2v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000100000010000001000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1p2p3v1v2v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=[0N×N0N×NIN0N×N]⋅X+[0N×NIN]⋅U=[0010]⊗IN⋅X+[01]⊗IN⋅U()
3.4 Second order two-dimensional system
The system model of a single agent is
[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) \begin{aligned} \left[\begin{matrix} \dot{p}^x_i \\ \dot{p}^y_i \\ \dot{v}^x_i \\ \dot{v}^y_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ v_i^x \\ v_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= a \otimes I_2 \cdot X_i + b \otimes I_2 \cdot U_i \end{aligned} \tag{} ⎣⎢⎢⎡p˙ixp˙iyv˙ixv˙iy⎦⎥⎥⎤=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⎣⎢⎢⎡pixpiyvixviy⎦⎥⎥⎤+⎣⎢⎢⎡00100001⎦⎥⎥⎤[uixuiy]=a⊗I2⋅Xi+b⊗I2⋅Ui()
3.4.1 Mode one
The system model of multiple agents is
[ p ˙ 1 x p ˙ 1 y v ˙ 1 x v ˙ 1 y p ˙ 2 x p ˙ 2 y v ˙ 2 x v ˙ 2 y p ˙ 3 x p ˙ 3 y v ˙ 3 x v ˙ 3 y ] = [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y v 1 x v 1 y p 2 x p 2 y v 2 x v 2 y p 3 x p 3 y v 3 x v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = I N ⊗ [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⋅ X + I N ⊗ [ 0 0 0 0 1 0 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{v}_1^x \\ \dot{v}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{v}_2^x \\ \dot{v}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \dot{v}_3^x \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ v_1^x \\ v_1^y \\ p_2^x \\ p_2^y \\ v_2^x \\ v_2^y \\ p_3^x \\ p_3^y \\ v_3^x \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡001000000000000100000000000000100000000000010000000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=IN⊗⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⋅X+IN⊗⎣⎢⎢⎡00100001⎦⎥⎥⎤⋅U()
3.4.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y v 1 x v 2 x v 3 x v 1 y v 2 y v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = [ 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N I N ] ⋅ U = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ v_1^x \\ v_2^x \\ v_3^x \\ v_1^y \\ v_2^y \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} & I_N & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & I_{N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} \\ I_{N} & 0_{N\times N} \\ 0_{N\times N} & I_{N} \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000100000000000010000000000001000000000000100000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×N⎦⎥⎥⎤⋅X+⎣⎢⎢⎡0N×N0N×NIN0N×N0N×N0N×N0N×NIN⎦⎥⎥⎤⋅U=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⊗IN⋅X+⎣⎢⎢⎡00100001⎦⎥⎥⎤⊗IN⋅U()
边栏推荐
- FortiGate firewall and Aruze cloud tunnel interruption
- FortiGate creates multiple corresponding DDNS dynamic domain names for multiple ADSL interfaces
- Code cloud fatal: authentication failed for
- Network layer protocol hardware
- How to repair expired SSL certificates?
- FortiGate firewall filters the specified session and cleans it up
- Process architecture and process management
- Learn about threads
- Differences between cookies and sessions
- 数据链路层详解
猜你喜欢
![[FPGA] IIC读写EEPROM 的实现](/img/6a/36e9355058a90d98cffafcbaa1930b.png)
[FPGA] IIC读写EEPROM 的实现

The most comprehensive summary notes of redis foundation + advanced project in history

FortiGate configures multiple server IPS as link monitor monitoring objects on the same interface

What is an optocoupler circuit and what should be paid attention to in actual use?

Wildcard SSL certificate issuing time
![Salary management system based on servlet+jsp+mysql [source code + database]](/img/4a/6015cf17f4297691e97b48a5592fc5.png)
Salary management system based on servlet+jsp+mysql [source code + database]

BeanFactory创建流程

Named pipes for interprocess communication

How to use div boxes to simulate line triangles

基于servlet+jsp+mysql实现的工资管理系统【源码+数据库】
随机推荐
FortiGate firewall quick initialization administrator password
The subsystem implementing transaction persistence in DBMS is ()
Threejs实现模拟河流,水面水流,水管水流,海面
FortiGate creates multiple corresponding DDNS dynamic domain names for multiple ADSL interfaces
One interview question a day the difference between B tree and b+ tree
How to renew an SSL certificate
Qt 6.3.1Conan软件包发布
BeanFactory创建流程
Troubleshooting of abnormal communication between FortiGate and fortiguard cloud
Introduction to system programming
Array of small C
Junior students summarize JS basic interview questions
Es2018 key summary
One interview question a day - the underlying implementation of synchronize and the lock upgrade process
Redis cache avalanche, breakdown and penetration
Read / write lock example
Enter the date format string as the production date of the commodity, and enter the shelf life (days); Calculate the number of days until today before the expiration date of the product. 1. Change the
Bean创建流程 与 lazy-init 延迟加载机制原理
Refers to the difference between IP and *ip at output
管道实现进程间通信之命名管道