当前位置:网站首页>[UAV] kinematic analysis from single propeller to four rotor UAV
[UAV] kinematic analysis from single propeller to four rotor UAV
2022-06-30 04:35:00 【Zhao-Jichao】
List of articles
1 Force analysis of single propeller
When a single propeller rotates , Pictured above M 1 M1 M1 and M 2 M2 M2, Will produce an upward lift T 1 , T 2 T_1, T_2 T1,T2 And rotational moment M 1 , M 2 M_1, M_2 M1,M2, The lift direction is vertical and the propeller is vertically upward , The direction of the rotational moment is generally assumed to be parallel to the plane of the aircraft , Perpendicular to boom .
2 Coordinate change
Before analyzing the impact of the four propellers on the UAV , First establish two coordinate systems , They are the world coordinate system S g S_g Sg And body coordinate system S b S_b Sb. At the same time, the transformation relationship between the two is given .
In the world coordinate system S g S_g Sg And body coordinate system S b S_b Sb The transformation matrix between is :
M g 2 b = [ cos θ cos ψ cos θ sin ψ − sin θ sin ϕ sin θ cos ψ − cos ϕ sin ψ sin ϕ sin θ sin ψ + cos ϕ cos ψ sin ϕ cos θ cos ϕ sin θ cos ψ + sin ϕ sin ψ cos ϕ sin θ sin ψ − sin ϕ cos ψ cos ϕ cos θ ] M_{g2b} = \left[\begin{matrix} \cos\theta \cos\psi & \cos\theta \sin\psi & -\sin\theta \\ \sin\phi \sin\theta \cos\psi - \cos\phi \sin\psi & \sin\phi \sin\theta \sin\psi + \cos\phi \cos\psi & \sin\phi \cos\theta \\ \cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi & \cos \phi \sin\theta \sin\psi - \sin\phi \cos\psi & \cos\phi \cos\theta \\ \end{matrix}\right] Mg2b=⎣⎡cosθcosψsinϕsinθcosψ−cosϕsinψcosϕsinθcosψ+sinϕsinψcosθsinψsinϕsinθsinψ+cosϕcosψcosϕsinθsinψ−sinϕcosψ−sinθsinϕcosθcosϕcosθ⎦⎤
The transformation between the ground coordinate system and the body coordinate system satisfies the equation ( For the replacement of this matrix relation, please refer to )
S b = M g 2 b ⋅ S g or S g = M b 2 g ⋅ S b S_b = M_{g2b} \cdot S_g ~~ \text{ or } ~~ S_g = M_{b2g} \cdot S_b Sb=Mg2b⋅Sg or Sg=Mb2g⋅Sb
M b 2 g = [ cos θ cos ψ sin ϕ sin θ cos ψ − cos ϕ sin ψ cos ϕ sin θ cos ψ + sin ϕ sin ψ cos θ sin ψ sin ϕ sin θ sin ψ + cos ϕ cos ψ cos ϕ sin θ sin ψ − sin ϕ cos ψ − sin θ sin ϕ cos θ cos ϕ cos θ ] M_{b2g}= \left[\begin{matrix} \cos\theta \cos\psi & \sin\phi \sin\theta \cos\psi - \cos\phi \sin\psi & \cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi \\ \cos\theta \sin\psi & \sin\phi \sin\theta \sin\psi + \cos\phi \cos\psi & \cos\phi \sin\theta \sin\psi - \sin\phi \cos\psi \\ -\sin\theta & \sin\phi \cos\theta & \cos\phi \cos\theta \\ \end{matrix}\right] Mb2g=⎣⎡cosθcosψcosθsinψ−sinθsinϕsinθcosψ−cosϕsinψsinϕsinθsinψ+cosϕcosψsinϕcosθcosϕsinθcosψ+sinϕsinψcosϕsinθsinψ−sinϕcosψcosϕcosθ⎦⎤
For the detailed derivation process of coordinate system transformation, please refer to : The first 5 Chapter - Unmanned aerial vehicle (uav) UAV model analysis .
3 The impact of the four propellers on the UAV
According to the difference between the established body coordinates and the UAV arm , UAVs can be divided into “ Ten ” Word flight mode and “X” Type a flight mode , As shown on the left and right of the figure below . About “ Ten ” Word flight mode , More discussion . But in actual flight , Use “X” Type mode more . So here we use “X” Type coordinates to perform the following analysis .
3.1 Effect of rotor on position
About the plane right Z b Z_b Zb The influence of the axis , It's easy to understand , At the same time, the lift of the propeller is increased T i T_i Ti, The UAV will be lifted vertically , So there is
T Z b = T 1 + T 2 + T 3 + T 4 (1) T_{Z_b} = T_1 + T_2 + T_3 + T_4 \tag{1} TZb=T1+T2+T3+T4(1)
among T Z b T_{Z_b} TZb It is expressed in the body coordinate system Z b Z_b Zb The force on an aircraft .
At this time, don't worry about mapping the acceleration to the Newton's law Z ¨ b \ddot{Z}_b Z¨b On , Otherwise, it would be difficult to switch down .
The effect of gravitational acceleration is not considered here , Because now Z b Z_b Zb Or the value in the body coordinate system . And the body coordinate system will change , The acceleration of gravity is constant relative to the world coordinate system .
But how to change the lift of the four propellers , Will not occur in X b X_{b} Xb and Y b Y_{b} Yb Change of direction , So there is
T X b = 0 (2) T_{X_b} = 0 \tag{2} TXb=0(2)
T Y b = 0 (3) T_{Y_b} = 0 \tag{3} TYb=0(3)
3.2 Effect of rotor on attitude angle
At the same time, the UAV also has three attitude angles , They are rolling angles ϕ \phi ϕ, Pitch angle θ \theta θ, Heading angle ψ \psi ψ, Note that these three attitude angles are relative to the body coordinate system S b S_b Sb In terms of the . How do they change ?
First, we study the relatively simple heading angle ψ \psi ψ. We know that when the propeller rotates, it will produce a rotating torque , The rotating torque generated by the four propellers is just the opposite direction of the two adjacent propellers , So it just offsets . Otherwise, the UAV will rotate in place . So we want the drone to rotate in place , It can be realized by adjusting the speed of the four propellers . Be careful , At this time, whether it is “ Ten ” Word or “X” The type pattern is the same . For example, we can reduce M 1 ( T 1 ) , M 3 ( T 3 ) M_1(T_1), M_3(T_3) M1(T1),M3(T3), Improve M 2 ( T 2 ) , M 4 ( T 4 ) M_2(T_2), M_4(T_4) M2(T2),M4(T4), So the aircraft keeps the total lift constant , Counter clockwise rotation occurs , To change the heading angle .
When air resistance is not considered , Yes
ψ ¨ = ( − M 1 + M 2 − M 3 + M 4 ) I z (4) \ddot{\psi} = \frac{(-M_1 + M_2 - M_3 + M_4)}{I_z} \tag{4} ψ¨=Iz(−M1+M2−M3+M4)(4)
When considering air resistance , Yes
ψ ¨ = ( − M 1 + M 2 − M 3 + M 4 − K 6 ψ ˙ ) I z (4) \ddot{\psi} = \frac{(-M_1 + M_2 - M_3 + M_4 - K_6 \dot{\psi})}{I_z} \tag{4} ψ¨=Iz(−M1+M2−M3+M4−K6ψ˙)(4)
among K 6 K_6 K6 It's the drag coefficient (drag coefficient), Determined by aerodynamics .
And change the roll angle ϕ \phi ϕ And pitch angle θ \theta θ, Is the lift difference between the four propellers of the aircraft . The first is the roll angle ϕ \phi ϕ, Because the roll angle is around X b X_b Xb The shaft rotates , According to the figure , We need to improve T 2 , T 3 T_2, T_3 T2,T3, Reduce T 1 , T 4 T_1, T_4 T1,T4. Empathy , Change the pitch angle θ \theta θ, The pitch angle is around Y b Y_b Yb The shaft rotates , So promote T 1 , T 2 T_1, T_2 T1,T2, Reduce T 3 , T 4 T_3, T_4 T3,T4.
When air resistance is not considered , Yes
ϕ ¨ = L ( − T 1 + T 2 + T 3 − T 4 ) I x (5) \ddot{\phi} = \frac{L (- T_1 + T_2 + T_3 - T_4)}{I_x} \tag{5} ϕ¨=IxL(−T1+T2+T3−T4)(5)
θ ¨ = L ( T 1 + T 2 − T 3 − T 4 ) I y (6) \ddot{\theta} = \frac{L (T_1 + T_2 - T_3 - T_4)}{I_y} \tag{6} θ¨=IyL(T1+T2−T3−T4)(6)
When considering air resistance , Yes
ϕ ¨ = L ( − T 1 + T 2 + T 3 − T 4 − K 4 ϕ ˙ ) I x (5) \ddot{\phi} = \frac{L (- T_1 + T_2 + T_3 - T_4 - K_4 \dot{\phi})}{I_x} \tag{5} ϕ¨=IxL(−T1+T2+T3−T4−K4ϕ˙)(5)
θ ¨ = L ( T 1 + T 2 − T 3 − T 4 − K 5 θ ˙ ) I y (6) \ddot{\theta} = \frac{L (T_1 + T_2 - T_3 - T_4 - K_5 \dot{\theta})}{I_y} \tag{6} θ¨=IyL(T1+T2−T3−T4−K5θ˙)(6)
A little bit of the relationship between torque and angular momentum is used here , Please refer to 【 control 】 Attitude angle analysis of four rotor UAV .
4 Output in body coordinates
In this way, we get the expression of six outputs of UAV ( Notice that gravity is not taken into account at this time , And the stress analysis is in the body coordinate system ).
{ T X b = 0 T Y b = 0 T Z b = T 1 + T 2 + T 3 + T 4 ϕ ¨ = L ( − T 1 + T 2 + T 3 − T 4 − K 4 ϕ ˙ ) I x θ ¨ = L ( T 1 + T 2 − T 3 − T 4 − K 5 θ ˙ ) I y ψ ¨ = ( − M 1 + M 2 − M 3 + M 4 − K 6 ψ ˙ ) I z (7) \left\{\begin{aligned} T_{X_b} &= 0 \\ T_{Y_b} &= 0 \\ T_{Z_b} &= T_1 + T_2 + T_3 + T_4 \\ \ddot{\phi} &= \frac{L (- T_1 + T_2 + T_3 - T_4 - K_4 \dot{\phi})}{I_x} \\ \ddot{\theta} &= \frac{L (T_1 + T_2 - T_3 - T_4 - K_5 \dot{\theta})}{I_y} \\ \ddot{\psi} &= \frac{(-M_1 + M_2 - M_3 + M_4 - K_6 \dot{\psi})}{I_z} \\ \end{aligned}\right. \tag{7} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧TXbTYbTZbϕ¨θ¨ψ¨=0=0=T1+T2+T3+T4=IxL(−T1+T2+T3−T4−K4ϕ˙)=IyL(T1+T2−T3−T4−K5θ˙)=Iz(−M1+M2−M3+M4−K6ψ˙)(7)
When the plane is flying at low speed , The drag coefficient is often negligible , So there can be
{ T X b = 0 T Y b = 0 T Z b = T 1 + T 2 + T 3 + T 4 ϕ ¨ = L ( − T 1 + T 2 + T 3 − T 4 ) I x θ ¨ = L ( T 1 + T 2 − T 3 − T 4 ) I y ψ ¨ = ( − M 1 + M 2 − M 3 + M 4 ) I z (7) \left\{\begin{aligned} T_{X_b} &= 0 \\ T_{Y_b} &= 0 \\ T_{Z_b} &= T_1 + T_2 + T_3 + T_4 \\ \ddot{\phi} &= \frac{L (- T_1 + T_2 + T_3 - T_4)}{I_x} \\ \ddot{\theta} &= \frac{L (T_1 + T_2 - T_3 - T_4)}{I_y} \\ \ddot{\psi} &= \frac{(-M_1 + M_2 - M_3 + M_4)}{I_z} \\ \end{aligned}\right. \tag{7} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧TXbTYbTZbϕ¨θ¨ψ¨=0=0=T1+T2+T3+T4=IxL(−T1+T2+T3−T4)=IyL(T1+T2−T3−T4)=Iz(−M1+M2−M3+M4)(7)
The position state in the body coordinates X b , Y b , Z b X_b, Y_b, Z_b Xb,Yb,Zb It is inconvenient for us to study , So we use coordinate transformation , Convert to world coordinates S g S_g Sg Next .
5 The position variable is converted to the world coordinate system
Because the influence of gravity was ignored before , Next we need to take into account the acceleration of gravity .
First, the force received by the UAV in the body coordinate system T X b , T Y b , T Z b T_{X_b}, T_{Y_b}, T_{Z_b} TXb,TYb,TZb Convert to the world coordinate system . At the same time, add Z g Z_g Zg The effect of the gravitational acceleration of the axis .
[ T X g T Y g T Z g ] = [ cos θ cos ψ sin ϕ sin θ cos ψ − cos ϕ sin ψ cos ϕ sin θ cos ψ + sin ϕ sin ψ cos θ sin ψ sin ϕ sin θ sin ψ + cos ϕ cos ψ cos ϕ sin θ sin ψ − sin ϕ cos ψ − sin θ sin ϕ cos θ cos ϕ cos θ ] [ T X b T Y b T Z b ] = [ cos ϕ sin θ cos ψ + sin ϕ sin ψ cos ϕ sin θ sin ψ − sin ϕ cos ψ cos ϕ cos θ ] ( T 1 + T 2 + T 3 + T 4 ) − [ 0 0 m g ] (8) \begin{aligned} \left[\begin{matrix} T_{X_g} \\ T_{Y_g} \\ T_{Z_g} \\ \end{matrix}\right]&= \left[\begin{matrix} \cos\theta \cos\psi & \sin\phi \sin\theta \cos\psi - \cos\phi \sin\psi & \cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi \\ \cos\theta \sin\psi & \sin\phi \sin\theta \sin\psi + \cos\phi \cos\psi & \cos\phi \sin\theta \sin\psi - \sin\phi \cos\psi \\ -\sin\theta & \sin\phi \cos\theta & \cos\phi \cos\theta \\ \end{matrix}\right] \left[\begin{matrix} T_{X_b} \\ T_{Y_b} \\ T_{Z_b} \\ \end{matrix}\right] \\ &= \left[\begin{matrix} \cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi \\ \cos \phi \sin\theta \sin\psi - \sin\phi \cos\psi \\ \cos\phi \cos\theta \\ \end{matrix}\right] (T_1 + T_2 + T_3 + T_4) - \left[\begin{matrix} 0 \\ 0 \\ m g \\ \end{matrix}\right] \end{aligned} \tag{8} ⎣⎡TXgTYgTZg⎦⎤=⎣⎡cosθcosψcosθsinψ−sinθsinϕsinθcosψ−cosϕsinψsinϕsinθsinψ+cosϕcosψsinϕcosθcosϕsinθcosψ+sinϕsinψcosϕsinθsinψ−sinϕcosψcosϕcosθ⎦⎤⎣⎡TXbTYbTZb⎦⎤=⎣⎡cosϕsinθcosψ+sinϕsinψcosϕsinθsinψ−sinϕcosψcosϕcosθ⎦⎤(T1+T2+T3+T4)−⎣⎡00mg⎦⎤(8)
At this time, consider the use of Newton's law , Switch to acceleration . The acceleration at this time is just in the world coordinate system .
T X g = m X ¨ g = ( cos ϕ sin θ cos ψ + sin ϕ sin ψ ) ( T 1 + T 2 + T 3 + T 4 ) (9) T_{X_g} = m \ddot{X}_g = (\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi)(T_1 + T_2 + T_3 + T_4) \tag{9} TXg=mX¨g=(cosϕsinθcosψ+sinϕsinψ)(T1+T2+T3+T4)(9)
T Y g = m Y ¨ g = ( cos ϕ sin θ sin ψ − sin ϕ cos ψ ) ( T 1 + T 2 + T 3 + T 4 ) (10) T_{Y_g} = m \ddot{Y}_g = (\cos \phi \sin\theta \sin\psi - \sin\phi \cos\psi)(T_1 + T_2 + T_3 + T_4) \tag{10} TYg=mY¨g=(cosϕsinθsinψ−sinϕcosψ)(T1+T2+T3+T4)(10)
T Z g = m Z ¨ g = ( cos ϕ cos θ ) ( T 1 + T 2 + T 3 + T 4 ) − m g (11) T_{Z_g} = m \ddot{Z}_g = (\cos\phi \cos\theta)(T_1 + T_2 + T_3 + T_4) - mg \tag{11} TZg=mZ¨g=(cosϕcosθ)(T1+T2+T3+T4)−mg(11)
The six outputs of the UAV , Where the acceleration is in the world coordinate system :
{ X ¨ g = ( cos ϕ sin θ cos ψ + sin ϕ sin ψ ) ( T 1 + T 2 + T 3 + T 4 ) m Y ¨ g = ( cos ϕ sin θ sin ψ − sin ϕ cos ψ ) ( T 1 + T 2 + T 3 + T 4 ) m Z ¨ g = ( cos ϕ cos θ ) ( T 1 + T 2 + T 3 + T 4 ) m − g ϕ ¨ = L ( − T 1 + T 2 + T 3 − T 4 − K 4 ϕ ˙ ) I x θ ¨ = L ( T 1 + T 2 − T 3 − T 4 − K 5 θ ˙ ) I y ψ ¨ = ( − M 1 + M 2 − M 3 + M 4 − K 6 ψ ˙ ) I z (12) \left\{\begin{aligned} \ddot{X}_g &= \frac{(\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi)(T_1 + T_2 + T_3 + T_4)}{m} \\ \ddot{Y}_g &= \frac{(\cos \phi \sin\theta \sin\psi - \sin\phi \cos\psi)(T_1 + T_2 + T_3 + T_4)}{m} \\ \ddot{Z}_g &= \frac{(\cos\phi \cos\theta)(T_1 + T_2 + T_3 + T_4)}{m} - g \\ \ddot{\phi} &= \frac{L (- T_1 + T_2 + T_3 - T_4 - K_4 \dot{\phi})}{I_x} \\ \ddot{\theta} &= \frac{L (T_1 + T_2 - T_3 - T_4 - K_5 \dot{\theta})}{I_y} \\ \ddot{\psi} &= \frac{(-M_1 + M_2 - M_3 + M_4 - K_6 \dot{\psi})}{I_z} \\ \end{aligned}\right. \tag{12} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧X¨gY¨gZ¨gϕ¨θ¨ψ¨=m(cosϕsinθcosψ+sinϕsinψ)(T1+T2+T3+T4)=m(cosϕsinθsinψ−sinϕcosψ)(T1+T2+T3+T4)=m(cosϕcosθ)(T1+T2+T3+T4)−g=IxL(−T1+T2+T3−T4−K4ϕ˙)=IyL(T1+T2−T3−T4−K5θ˙)=Iz(−M1+M2−M3+M4−K6ψ˙)(12)
Again , When the influence of air resistance is ignored , Yes
{ X ¨ g = ( cos ϕ sin θ cos ψ + sin ϕ sin ψ ) ( T 1 + T 2 + T 3 + T 4 ) m Y ¨ g = ( cos ϕ sin θ sin ψ − sin ϕ cos ψ ) ( T 1 + T 2 + T 3 + T 4 ) m Z ¨ g = ( cos ϕ cos θ ) ( T 1 + T 2 + T 3 + T 4 ) m − g ϕ ¨ = L ( − T 1 + T 2 + T 3 − T 4 ) I x θ ¨ = L ( T 1 + T 2 − T 3 − T 4 ) I y ψ ¨ = ( − M 1 + M 2 − M 3 + M 4 ) I z (12) \left\{\begin{aligned} \ddot{X}_g &= \frac{(\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi)(T_1 + T_2 + T_3 + T_4)}{m} \\ \ddot{Y}_g &= \frac{(\cos \phi \sin\theta \sin\psi - \sin\phi \cos\psi)(T_1 + T_2 + T_3 + T_4)}{m} \\ \ddot{Z}_g &= \frac{(\cos\phi \cos\theta)(T_1 + T_2 + T_3 + T_4)}{m} - g \\ \ddot{\phi} &= \frac{L (- T_1 + T_2 + T_3 - T_4)}{I_x} \\ \ddot{\theta} &= \frac{L (T_1 + T_2 - T_3 - T_4)}{I_y} \\ \ddot{\psi} &= \frac{(-M_1 + M_2 - M_3 + M_4)}{I_z} \\ \end{aligned}\right. \tag{12} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧X¨gY¨gZ¨gϕ¨θ¨ψ¨=m(cosϕsinθcosψ+sinϕsinψ)(T1+T2+T3+T4)=m(cosϕsinθsinψ−sinϕcosψ)(T1+T2+T3+T4)=m(cosϕcosθ)(T1+T2+T3+T4)−g=IxL(−T1+T2+T3−T4)=IyL(T1+T2−T3−T4)=Iz(−M1+M2−M3+M4)(12)
Here we control the relationship , It can also be said that the variable relationship is clear . I know six outputs X g , Y g , Z g , ϕ , θ , ψ X_g, Y_g, Z_g, \phi, \theta, \psi Xg,Yg,Zg,ϕ,θ,ψ, The lift of the four propellers can be calculated from the above formula T 1 , T 2 , T 3 , T 4 T_1, T_2, T_3, T_4 T1,T2,T3,T4 了 , And torque M 1 , M 2 , M 3 , M 4 M_1, M_2, M_3, M_4 M1,M2,M3,M4 And lift are both positively related to rotational speed , It can also be understood as knowing the speed that each propeller needs to reach .
6 Simplified analysis
But we don't study the flight of UAV under aerodynamics , Therefore, the influence of air resistance will be ignored in the following discussion . At the same time, for convenience , We assume that M i = C ⋅ T i , i = 1 , 2 , 3 , 4 M_i = C \cdot T_i, i=1,2,3,4 Mi=C⋅Ti,i=1,2,3,4. Define four variables that have the following relationship with the propeller lift ,
[ u f u ϕ u θ u ψ ] = [ 1 1 1 1 − L L L − L L L − L − L − C C − C C ] [ T 1 T 2 T 3 T 4 ] = [ T 1 + T 2 + T 3 + T 4 ( − T 1 + T 2 + T 3 − T 4 ) L ( T 1 + T 2 − T 3 − T 4 ) L ( − T 1 + T 2 − T 3 + T 4 ) C ] (13) \begin{aligned} \left[\begin{matrix} u_f \\ u_\phi \\ u_\theta \\ u_\psi \\ \end{matrix}\right]&= \left[\begin{matrix} 1 & 1 & 1 & 1 \\ -L & L & L & -L \\ L & L & -L & -L \\ -C & C & -C & C \\ \end{matrix}\right] \left[\begin{matrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ \end{matrix}\right] \\ &= \left[\begin{matrix} T_1 + T_2 + T_3 + T_4 \\ (-T_1 + T_2 + T_3 - T_4) L \\ (T_1 + T_2 - T_3 - T_4) L \\ (-T_1 + T_2 - T_3 + T_4) C \\ \end{matrix}\right] \end{aligned} \tag{13} ⎣⎢⎢⎡ufuϕuθuψ⎦⎥⎥⎤=⎣⎢⎢⎡1−LL−C1LLC1L−L−C1−L−LC⎦⎥⎥⎤⎣⎢⎢⎡T1T2T3T4⎦⎥⎥⎤=⎣⎢⎢⎡T1+T2+T3+T4(−T1+T2+T3−T4)L(T1+T2−T3−T4)L(−T1+T2−T3+T4)C⎦⎥⎥⎤(13)
such ,(12) It can be simplified to
{ X ¨ g = ( cos ϕ sin θ cos ψ + sin ϕ sin ψ ) u f m Y ¨ g = ( cos ϕ sin θ sin ψ − sin ϕ cos ψ ) u f m Z ¨ g = ( cos ϕ cos θ ) u f m − g ϕ ¨ = u ϕ I x θ ¨ = u θ I y ψ ¨ = u ψ I z (14) \left\{\begin{aligned} \ddot{X}_g &= \frac{(\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi)~ u_f}{m} \\ \ddot{Y}_g &= \frac{(\cos \phi \sin\theta \sin\psi - \sin\phi \cos\psi)~ u_f}{m} \\ \ddot{Z}_g &= \frac{(\cos\phi \cos\theta)~ u_f}{m} - g \\ \ddot{\phi} &= \frac{u_\phi}{I_x} \\ \ddot{\theta} &= \frac{u_\theta}{I_y} \\ \ddot{\psi} &= \frac{u_\psi}{I_z} \\ \end{aligned}\right. \tag{14} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧X¨gY¨gZ¨gϕ¨θ¨ψ¨=m(cosϕsinθcosψ+sinϕsinψ) uf=m(cosϕsinθsinψ−sinϕcosψ) uf=m(cosϕcosθ) uf−g=Ixuϕ=Iyuθ=Izuψ(14)
Once again,
边栏推荐
- Threejs实现模拟河流,水面水流,水管水流,海面
- What is SQL injection and how to avoid it?
- What to do when the alicloud SSL certificate expires
- Myrpc version 0
- Sectigo certificate
- If you encounter problems when using spark for the first time, please ask for help
- FortiGate firewall modifies the default timeout of a session
- What is the difference between synchronized and lock
- Learning about signals
- FortiGate creates multiple corresponding DDNS dynamic domain names for multiple ADSL interfaces
猜你喜欢
Interprocess communication
Network layer protocol hardware
Bean创建流程 与 lazy-init 延迟加载机制原理
Configure specific source IP in SLA detection of FortiGate sdwan
Sectigo certificate
Cheap SSL certificate abroad
Directory operations and virtual file systems
Redis implements SMS login function (II) redis implements login function
Redis sentry, persistence, master-slave, hand tear LRU
Salary management system based on servlet+jsp+mysql [source code + database]
随机推荐
How the FortiGate firewall rejects a port by using the local in policy policy
oslo_ config. cfg. ConfigFileParseError: Failed to parse /etc/glance/glance-api. Conf: a solution to errors
JS deconstruction assignment
Machine learning notes
Redis实现短信登入功能(二)Redis实现登入功能
SSL universal domain name certificate
Mongodb learning
Modifier of JS regular expression
SSL update method
Daily summary of code knowledge
Detailed explanation of network layer
FortiGate firewall filters the specified session and cleans it up
[learn FPGA programming from scratch -52]: high level chapter - FPGA development based on IP core - basic framework for IP core use (taking PLL as an example)
Qt Creator 8 Beta2发布
SQL error caused by entity class: Oracle "ora-00904" error: possible case of invalid identifier
This connection is not a private connection this website may be pretending to steal your personal or financial information
FortiGate firewall and Aruze cloud tunnel interruption
Redis实现短信登入功能(一)传统的Session登入
Summary of the reasons why transactional doesn't work
What is an optocoupler circuit and what should be paid attention to in actual use?