当前位置:网站首页>[combinatorics] generating function (commutative property | derivative property | integral property)
[combinatorics] generating function (commutative property | derivative property | integral property)
2022-07-03 17:55:00 【Programmer community】
List of articles
- One 、 The commutative property of generating function
- Two 、 Derivation property of generating function
- 3、 ... and 、 Integral property of generating function
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
One 、 The commutative property of generating function
Summation property of generating function 1 :
b
n
=
α
n
a
n
b_n = \alpha^n a_n
bn=αnan , be
B
(
x
)
=
A
(
α
x
)
B(x) =A( \alpha x)
B(x)=A(αx)
The sequence
a
n
a_n
an The generating function of is
A
(
x
)
A(x)
A(x) , The sequence
b
n
b_n
bn The generating function of is
B
(
x
)
B(x)
B(x) ,
The sequence
a
n
=
{
a
0
,
a
1
,
a
2
,
⋯
}
a_n = \{ a_0 , a_1, a_2 , \cdots \}
an={ a0,a1,a2,⋯} , The sequence
b
n
=
{
α
0
a
0
,
α
1
a
1
,
α
2
a
2
,
⋯
}
b_n = \{ \alpha^0a_0 , \alpha^1a_1, \alpha^2a_2 , \cdots \}
bn={ α0a0,α1a1,α2a2,⋯} ;
The sequence
a
n
a_n
an The generating function of
A
(
x
)
=
a
0
x
0
+
a
1
x
+
a
2
x
2
+
⋯
A(x) = a_0x^0 + a_1x + a_2x^2 + \cdots
A(x)=a0x0+a1x+a2x2+⋯
The sequence
b
n
b_n
bn The generating function of
B
(
x
)
=
α
0
a
0
x
0
+
α
1
a
1
x
1
+
α
2
a
2
x
2
+
⋯
B(x) = \alpha^0a_0x^0 + \alpha^1a_1x^1 + \alpha^2a_2x^2 + \cdots
B(x)=α0a0x0+α1a1x1+α2a2x2+⋯
Method of proof :
stay
b
n
b_n
bn The generating function of
B
(
x
)
B(x)
B(x) in , take
α
0
x
0
\alpha^0x^0
α0x0 As an item , take
α
1
x
1
\alpha^1x^1
α1x1 As an item , take
α
2
x
2
\alpha^2x^2
α2x2 As an item ,
By observing the above items, we can see ,
α
\alpha
α And
x
x
x The power of is the same ,
So you can take
α
x
\alpha x
αx As a variable ,
In this way, you can get
B
(
x
)
=
A
(
α
x
)
B(x) =A( \alpha x)
B(x)=A(αx) The formula ;
Two 、 Derivation property of generating function
Derivation property of generating function :
b
n
=
n
a
n
b_n = n a_n
bn=nan , be
B
(
x
)
=
x
A
′
(
x
)
B(x) =xA'( x)
B(x)=xA′(x)
The sequence
a
n
a_n
an The generating function of is
A
(
x
)
A(x)
A(x) , The sequence
b
n
b_n
bn The generating function of is
B
(
x
)
B(x)
B(x) ,
The sequence
a
n
=
{
a
0
,
a
1
,
a
2
,
⋯
,
a
n
,
⋯
}
a_n = \{ a_0 , a_1, a_2 , \cdots , a_n , \cdots \}
an={ a0,a1,a2,⋯,an,⋯} , The sequence
b
n
=
{
0
a
0
,
a
1
,
2
a
2
,
⋯
,
n
a
n
,
⋯
}
b_n = \{ 0a_0 , a_1, 2a_2 , \cdots, na_n ,\cdots \}
bn={ 0a0,a1,2a2,⋯,nan,⋯} ;
The sequence
a
n
a_n
an The generating function of
A
(
x
)
=
a
0
x
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
+
⋯
A(x) = a_0x^0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots
A(x)=a0x0+a1x+a2x2+⋯+anxn+⋯
The sequence
b
n
b_n
bn The generating function of
B
(
x
)
=
0
a
0
x
0
+
1
a
1
x
1
+
2
a
2
x
2
+
⋯
+
n
a
n
x
n
+
⋯
B(x) = 0a_0x^0 + 1a_1x^1 + 2a_2x^2 + \cdots + na_nx^n + \cdots
B(x)=0a0x0+1a1x1+2a2x2+⋯+nanxn+⋯
Prove the above properties :
take The sequence
a
n
a_n
an The generating function of
A
(
x
)
A(x)
A(x) Derivation , Again multiply
x
x
x , You can get
B
(
x
)
B(x)
B(x) ;
A
(
x
)
=
a
0
x
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
+
⋯
A(x) = a_0x^0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots
A(x)=a0x0+a1x+a2x2+⋯+anxn+⋯
Use derivative formula :
(
x
n
)
′
=
n
x
n
−
1
(x^n)' = nx^{n-1}
(xn)′=nxn−1
Reference resources : Derivation - Baidu Encyclopedia
A
′
(
x
)
=
0
+
a
1
+
2
a
2
x
+
⋯
+
n
a
n
x
n
−
1
+
⋯
A'(x) = 0 + a_1 + 2a_2x + \cdots + na_nx^{n-1} + \cdots
A′(x)=0+a1+2a2x+⋯+nanxn−1+⋯
x
A
′
(
x
)
=
0
+
a
1
x
+
2
a
2
x
2
+
⋯
+
n
a
n
x
n
+
⋯
=
B
(
x
)
xA'(x) = 0 + a_1x + 2a_2x^2 + \cdots + na_nx^{n} + \cdots = B(x)
xA′(x)=0+a1x+2a2x2+⋯+nanxn+⋯=B(x)
3、 ... and 、 Integral property of generating function
b
n
=
a
n
n
+
1
b_n = \cfrac{a_n}{n+1}
bn=n+1an , be
B
(
x
)
=
1
x
∫
0
x
A
(
x
)
d
x
B(x) =\cfrac{1}{x} \int^{x}_{0} A( x)dx
B(x)=x1∫0xA(x)dx
The above properties are hard to remember , Generate functions from known , Unknown generating functions can be derived , You can deduce when using ;
边栏推荐
- Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
- 毕业总结
- Interviewer: why is the value nil not equal to nil?
- Website with JS doesn't work in IE9 until the Developer Tools is activated
- QT adjust win screen brightness and sound size
- PHP MySQL where clause
- Leetcode 669 pruning binary search tree -- recursive method and iterative method
- PHP returns 500 errors but no error log - PHP return 500 error but no error log
- Design limitations of structure type (struct)
- ES6类的继承
猜你喜欢

AcWing 271. 杨老师的照相排列【多维DP】

Getting started with deops

How to purchase Google colab members in China

Baiwen.com 7 days Internet of things smart home learning experience punch in the next day

Five problems of database operation in commodity supermarket system

1146_ SiCp learning notes_ exponentiation

Introduction to SolidWorks gear design software tool geartrax

Interviewer: why is the value nil not equal to nil?

SQL injection database operation foundation

BFS - topology sort
随机推荐
Analyse ArrayList 3: suppression d'éléments
PHP MySQL preprocessing statement
ArrayList analysis 3: delete elements
List的stream中Long对象与long判等问题记录
The difference between i++ and ++i: tell their differences easily
A. Odd Selection【BruteForce】
[combinatorics] generating function (shift property)
Kotlin's collaboration: Context
Keepalived 设置不抢占资源
Inheritance of ES6 class
List of financial products in 2022
Research Report on competitive strategy Outlook Analysis and investment strategic planning of China's smart home equipment industry, 2022-2028
How to install PHP on Ubuntu 20.04
微服务组件Sentinel控制台调用
Ssl/bio of OpenSSL_ get_ fd
模块九作业
Embedded-c language-7
Assembly for unloading Loadfrom() loaded assembly - unloading the assembly loaded with assembly LoadFrom()
Leetcode 669 pruning binary search tree -- recursive method and iterative method
Kotlin的协程:上下文