当前位置:网站首页>(TensorFlow)——tf.variable_scope和tf.name_scope详解
(TensorFlow)——tf.variable_scope和tf.name_scope详解
2022-08-04 05:28:00 【大黄猫一号】
这几天学习tensorflow,看到关于tf.variable_scope和tf.name_scop,一直没有深入了解其中的作用。转载一篇博客:
Tensorflow中tf.name_scope() 和 tf.variable_scope() 的区别 记录一下作用,一面以后忘记。
在这里简单点说下:
tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量
tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量
例如:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
with tf.variable_scope('V1'):
a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print a1.name
print a2.name
print a3.name
print a4.name输出:
V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0
例子2:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
with tf.name_scope('V1'):
a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print a1.name
print a2.name
print a3.name
print a4.name报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
换成下面的代码就可以执行
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
with tf.name_scope('V1'):
# a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
# a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
# print a1.name
print a2.name
# print a3.name
print a4.name输出:
V1/a2:0
V2/a2:0
边栏推荐
猜你喜欢
随机推荐
Kubernetes基本入门-概念介绍(一)
PHP解决字符乱码问题(多种编码转换)
自动化运维工具Ansible(2)ad-hoc
Shell(3)条件控制语句
对象存储-分布式文件系统-MinIO-3:MinIo Client(mc)
thymeleaf中onclick事件动态传递参数问题
webrtc中的视频编码(一) 视频编码模块轮廓
bind和function
Commons Collections2
【树 图 科 技 头 条】2022年6月28日 星期二 伊能静做客树图社区
[NSSRound#1 Basic]
关于let var 和const的区别以及使用
攻防世界MISC———Dift
解决JDBC在web工程中无法获取配置文件
跨域问题的解决
Commons Collections1
SQL练习 2022/7/4
with recursive用法
网络大作业心得笔记
对象存储-分布式文件系统-MinIO-2:服务端部署









