当前位置:网站首页>10 Convolutional Neural Networks for Deep Learning 2
10 Convolutional Neural Networks for Deep Learning 2
2022-08-03 09:03:00 【water w】
本文是接着上一篇深度学习之 10 卷积神经网络1_水w的博客-CSDN博客
目录
2 General structural framework
(1)General structural framework:卷积层 ——Extract features using convolution kernels
The essence of the convolution kernel:
(2)General structural framework:池化层
(3)General structural framework:全连接层
CNNThe process by which a convolutional neural network recognizes images
3 What Convolutional Neural Networks are good at
1 出现原因
在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:
* 图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高;
* 图像需要处理的数据量太大,导致成本很高,效率很低;
When working with image data on a fully connected network,拉伸成1维:The local spatial features of the image are lost.
CNN 解决了这个问题:他用类似视觉的方式保留了图像的特征,当图像做翻转、旋转或者变换位置时,它也能有效的识别出来是类似的图像.
2 General structural framework
(1)General structural framework:卷积层 ——Extract features using convolution kernels
The essence of the convolution kernel:
The first layer extracts edges,The second layer combines the extracted edges into shapes,The third layer extracts obvious objects.
- A single convolution kernel represents some kind of simple feature of the image.比如垂直边缘、水平边缘、颜色、纹理等.
- All convolution kernels add up as a collection of feature extractors for the entire image.
- Stacking multiple layers of convolution can progressively extract higher levels、更复杂、更抽象、More generalized features.
卷积核深度(通道数)should match the input!
*Use convolution kernel for convolution calculation,
* 卷积结果,
* 卷积结果:Consider multiple filters
*因此,如果我们有6个5x5x3的滤波器,我们将获得6a separate activation map:
We stack them,以获得尺寸为28x28x6的“新图片”!
The size of the output of the convolutional layer? --- 通道数* The number of channels of the convolution kernel used by a convolutional layer is equal to the number of channels of the input data of this layer* The number of output channels of a convolutional layer is equal to the number of convolution kernels used in that layer
The size of the output of the convolutional layer? --- 长/宽在实际中:Commonly used zero-pad borders,保证输入输出尺寸相同 . (N – K+2P) / stride + 1通常的情况是,The convolutional layer stride is set to 1,滤波器大小为KxK,则一般使用(K-1)/ 2pixels are zero-padded(The size will be preserved in space)
总结
Given a convolutional layer,
需要四个参数:* 卷积核数目F* 卷积核大小K* 步长S* Number of zero paddingP输入图片大小为 𝑊1 × 𝐻1 × 𝐷1;The output size after convolution is 𝑊2 × 𝐻2 × 𝐷2 ,其中* 宽度:𝑊2 = (𝑊1 − 𝐾 + 2𝑃)Τ𝑆 + 1* 高度:𝐻2 = (𝐻1 − 𝐾 + 2𝑃)Τ𝑆 + 1*通道数=卷积核数: 𝐷2 = F通过参数共享,Each filter is introduced𝐾 ∗ 𝐾 ∗ 𝐷1 + 1 个参数,因此一共有 𝐹 ∗ 𝐾 ∗ 𝐾 ∗ 𝐷1 + F个参数;输出结果中,第𝑑个切片(大小为 𝑊2 × 𝐻2)is the pass on the input𝑑convolution kernel with stride𝑆Do convolution and then add 上𝑏𝑖𝑎𝑠的结果.
特征图可视化
- 通过deconvolution,可以对feature map 进行可视化;
- 浅层layer学到的特征为简单的边缘、角点、 纹理、几何形状、表面等;
- 深层layer学到的特征则更为复杂抽象;
- 人工只能胜任简单卷积核的设计,如边缘;
- The convolution kernel weights of each layer of the convolutional neural network are driven by dataMove to learn,不是人工设计的.
- Data-driven convolutional neural networks逐层Learn from simple to complex features(模式);
- 复杂模式是由简单模式组合而成;
- 不同的边缘->不同纹理->Different geometric figures->different silhouettes->不同的物体...
- The combination of shallow patterns can be varied,The patterns that make the deep layer descriptive can also vary,So have a strong table
(2)General structural framework:池化层
池化层(下采样)——数据降维,避免过拟合
(3)General structural framework:全连接层
CNNThe process by which a convolutional neural network recognizes images
3 What Convolutional Neural Networks are good at
以(多维)数组形式signal appearingStrong local correlation的信号A signal that features can appear anywhereObject translation and deformation invariant signals1D Convolutional Networks:Sequential signal,文本• 文本、音乐、音频、演讲、时间序列2D Convolutional Networks:图像,时频表示(Voice and Audio)• 目标检测、定位、识别3D Convolutional Networks:视频,体积图像,断层扫描图像• 视频识别/理解• Biomedical Image Analysis• Hyperspectral image analysis
边栏推荐
猜你喜欢
随机推荐
数仓4.0(一)
多媒体数据处理实验1:算术编码
多媒体数据处理实验4:LSH索引
判断根节点是否等于子节点之和
Exception: Dataset not found.解决办法
常见STP生成树调整命令
分区分表(一)
基于二次型性能指标的燃料电池过氧比RBF-PID控制
redis键值出现 xacxedx00x05tx00&的解决方法
Redis cluster concept and construction
dflow入门1——HelloWorld!
LINGO 18.0 software installation package download and installation tutorial
响应式布局经典范例——巨幅背景大标题
redis stream 实现消息队列
scala减少,reduceLeft reduceRight,折叠,foldLeft foldRight
FusionAccess软件架构、FusionAccess必须配置的四个组件、桌面发放流程、虚拟机组类型、桌面组类型
合并两个有序链表
xtrabackup
IDEA的database使用教程(使用mysql数据库)
【快手面试】Word2vect生成的向量,为什么可以计算相似度,相似度有什么意义?