当前位置:网站首页>Chapter 9 of Huawei Deep Learning Course - Convolutional Neural Network and Case Practice
Chapter 9 of Huawei Deep Learning Course - Convolutional Neural Network and Case Practice
2022-08-01 07:27:00 【swl. Crow】
目录
第一节 Convolutional Neural Networks Review Summary
前言
This course refers to learning Huawei Deep Learning Course
第一节 Convolutional Neural Networks Review Summary
This section briefly describes the network layers of a convolutional neural network、The core ideas and advantages are reviewed and summarized
首先,Convolutional Neural Networks have convolutional layers、池化层和全连接层.
The function of the convolutional layer is to extract the local features of the image;
The role of the pooling layer is to reduce the amount of parameters and solve the problem of image invariance;
The role of the fully connected layer is to map the feature map to a vector,以便分类.
其次,The core idea of convolutional neural network is parameter sharing and local perception.
因此,Convolutional Neural Networks imitate the characteristics of people's local perception of images,Feature extraction is performed through the action of convolution,in order to reduce the redundant amount of information,Understand the salient features of retention.
最后,Convolutional Neural Networks have significant advantages in the field of computer vision,Because it can achieve high-precision recognition and can automatically extract features(The traditional image processing is to extract features based on certain rules).
第二节 经典的CNN网络
The development of deep learning and convolutional neural networks is inseparableILSVRC比赛,with the competition,Many classic convolutional neural networks have emerged.
AlexNet
(1)网络结构:
Because at that time the network structure appeared,Chip performance is not very powerful,所以最早AlexNetThe structure adopts the design of data shunting.
(2)特点:
- 使用ReLU函数代替了Sigmoid激活函数,实现快速收敛.
- design overlappingPooling,即stride<kernel size,Overfitting can be reduced.
- 进行了数据增强,能够防止过拟合.
- designed a stepDropout,Randomly drop certain neurons,防止过拟合.
VGGNet
(1)网络结构:
(2)特点:
VGGNetNeural Networks starring research on the effect of depth on convolutional networks,使用3*3卷积核,Convolution is repeated continuously、池化,最后全连接、Softmax,Get the output probability.
Below are its six configurations:
GoogLeNet
(1)网络结构:
(2)特点:
GoogLeNetWhat is explored are convolution kernels of different sizes、The impact of wider network layers on classification performance.It is proved that more convolutions and deeper layers lead to better structure.
与AlexNetOne of the differences is joiningInception结构:
使用不同大小的卷积核,Extract features of different receptive fields.
ResNet
(1)网络结构:
(2)特点:
The residual structure is designed,It effectively solves the problem of gradient disappearance of deep neural network.
SENet
Not a complete neural network by itself,is a module that can be embedded into other neural networks:
Its structure is added toInceptionThe structure is as follows:
加入到残差结构中:
案例实践
Resnet-经典卷积神经网络
边栏推荐
- Golang: go to connect and use mysql
- Json对象和Json字符串的区别
- 目标检测概述-上篇
- 【一句话攻略】彻底理解JS中的回调(Callback)函数
- 阿里三面:MQ 消息丢失、重复、积压问题,该如何解决?
- VoLTE基础学习系列 | 企业语音网简述
- 22牛客多校1 J.Serval and Essay (启发式合并)
- 【南瓜书ML】(task4)神经网络中的数学推导(更新ing)
- 阿里云李飞飞:中国云数据库在很多主流技术创新上已经领先国外
- Three aspects of Ali: How to solve the problem of MQ message loss, duplication and backlog?
猜你喜欢
随机推荐
Summary of test points about app updates in different ways
zip打包目录所有文件(含隐藏文件/夹)
阿里云李飞飞:中国云数据库在很多主流技术创新上已经领先国外
图片无损压缩软件哪个好用:试试完全免费的JPG-C 图片批量修整压缩减肥工具吧 | 最新jpg批量修整工具下载
史上超强最常用SQL语句大全
Image lossless compression software which works: try completely free JPG - C image batch finishing compression reduces weight tools | latest JPG batch dressing tools download
GO错误处理方式
22牛客多校1 J.Serval and Essay (启发式合并)
Generate pictures based on the content of the specified area and share them with a summary
app 自动化 打开app (二)
选择排序—直接选择排序和堆排序
crypto-js uses
如何使用Photoshop合成星轨照片,夜空星轨照片后期处理方法
Vim三种模式
Golang: go open web service
Information system project managers must recite the work of the core test site (56) Configuration Control Board (CCB)
pytest接口自动化测试框架 | parametrize中ids的用法
R语言使用gt包和gtExtras包优雅地、漂亮地显示表格数据:gtExtras包的pad_fn函数与gt::fmt函数一起用于填充包含数值的特定列、对数据列的数值进行十进制对齐(从小数点对齐)
【南瓜书ML】(task4)神经网络中的数学推导(更新ing)
return;代表含义



















