当前位置:网站首页>【RISC-V】risc-v架构学习笔记(架构初学)
【RISC-V】risc-v架构学习笔记(架构初学)
2022-07-31 08:27:00 【m0_67403188】
Register
介绍
RISC-V架构提供31个用户可修改的通用(基本)寄存器,即x1到x31,以及一个额外的只读寄存器x0,硬连接到0。x0寄存器的一个常见用途是帮助将其他寄存器初始化为零。
共有31个通用寄存器。
其中7个是临时寄存器(t0t6)。
a0a7用于函数参数。s0s11用于保存寄存器或函数定义内。
一个堆栈指针,一个全局指针和一个线程指针寄存器。
一个返回地址寄存器(x1),用于存储函数调用的返回地址。
一个程序计数器(pc)。PC保存着当前指令的地址。
所有寄存器都可以作为通用寄存器使用
Stack Pointer Register(SP)
在RISC-V体系结构中,x2寄存器被用作栈指针(sp),并保存栈的基址。此外,栈基址必须对齐到4个字节。如果不这样做,可能会出现加载/存储对齐错误。
Global Pointer Register(GP)
RISC-V使用x3 (gp)寄存器将所有全局变量放置在指定的特定区域。x3寄存器将保存全局变量所在位置的基址。
Thread Pointer Register(TP)
在多线程应用程序中,每个线程可能有自己的私有变量集,称为“线程特定变量”。这组变量将由寄存器x4 (tp)指向。
因此,每个线程在其x4寄存器中都有一个不同的值。
Return Address Register(RA)
x1 (ra)寄存器用于保存子程序的返回地址。在执行子程序调用之前,x1设置为子程序的返回地址,通常为“pc + 4”。标准的软件调用约定使用x1 (ra)寄存器来保存函数调用的返回地址。
Argument Register(参数寄存器)
在RISC-V中,8个参数寄存器,即x10x17(对应a0a7)用于在子程序中传递参数。
在子程序调用之前,子程序的参数被复制到参数寄存器。在参数数量超过8的情况下使用栈。
Temporary Register(临时寄存器)
临时寄存器用于在指令执行期间保存中间值。在RISC-V中有7个临时寄存器(t0t6)。
Privilege mode


risc-v架构将特权等级分为三个M、S、U。
User Mode:简称U 通常运行应用程序
Supervisor Mode:简称S 通常运行操作系统
Machine Mode:简称M 用于管理安全执行环境,最高权限,必选,其他两种模式都是可选的。
三种模式可以互相切换
Control and Status Registers (CSRs)
Registers
CSR寄存器非常多,下图为一些经常使用到的寄存器
MSTATUS(Machine Status Register)
Machine Status Register(MSTATUS)寄存器详细描述了机器的状态,并帮助控制机器的状态。mstatus寄存器有几个位来控制机器的不同状态。
](https://img-blog.csdnimg.cn/9f13268940924d19a647e48642e09384.png)
MSTATUS包含许多可以读取和更新的字段。通过修改这些字段,软件可以做一些事情,比如启用/禁用中断和更改虚拟内存模型等。
mstatus.MIE:Machine- Mode interrupt enable,机器模式全局中断使能位
mstatus.SIE: Supervisor-Mode interrupt enable,管理员模式全局中断使能位
x IE:=1则使能全局中断,=0则关闭全局中断,其只能控制小于或等于x模式下的中断,比如SIE=0,M模式下的中断不受其影响。
mstatus.MPIE:Machine- Mode previous interrupt enable,机器模式先前中断使能位
mstatus.SPIE:Supervisor-Mode previous interrupt enable,管理员模式先前中断使能位
x PIE:保存在trap之前interrupt-enable(x IE)位的值。
mstatus.MPP:Machine- Mode previous privilege,机器模式先前特权模式
mstatus.SPP:Supervisor- Mode previous privilege,管理员模式先前特权模式
x PP:保存trap之前的特权模式。xPP字段只能持有最多x的特权模式,因此MPP是2位宽,SPP是1位宽。
mstatus.MPRV:MPRV (Modify PRiVilege)位修改有效特权模式,即加载和存储执行时的特权级别。当MPRV=0时,使用当前特权模式的转换和保护机制,加载和存储行为正常。当MPRV=1时,加载和存储内存地址被转换和保护,并应用字节顺序,就好像当前特权模式被设置为MPP。指令地址转换和保护不受MPRV设置的影响。如果不支持U-mode,则MPRV为只读0。
当使用mret从trap中返回。会根据MPP的值来确定返回的新的特权模式,然后硬件改写mstatus中的MPP=0,MIE=MPIE,MPIE=进trap前的MIE,并设置PC=MEPC。
MCAUSE(Machine Cause Register)
Machine Cause Register寄存器是一个mxlen位的读写寄存器。当一个trap被带入m模式时,mcause被硬件写入一个代码,指示导致该trap的事件。如果trap是由中断引起的,则设置mcause寄存器中的中断bit位。

MTVEC(Machine Trap Vector Base Address register)
MTVEC用于存储Trap处理程序的地址。就是存储中断向量表的基地址。

当MODE=Direct时,所有进入机器模式的trap都会导致pc被设置为BASE字段中的地址。当MODE= vector时,所有进入机器模式的同步异常都会导致pc被设置为BASE字段中的地址,而异步中断会导致pc被设置为BASE字段中的地址加上中断cause数的四倍。
MEPC(Machine Exception Program Counter)
它保存导致trap的指令的地址。
MIE(Machine Interrupt Enable Register)
中断使能寄存器,区别于mstatus.MIE作为全局控制,MIE是局部控制。
MEIE:M模式外部中断使能位
SEIE:S模式外部中断使能位
MTIE:M模式timer中断使能位
STIE:S模式外部中断使能位
MSIE:M模式软中断使能位
SSIE:S模式软中断使能位
MIP(Machine Interrupt Pending Register )
中断挂起寄存器,包含关于挂起中断的信息。
我的理解:当正在处理一个中断,并且mie关掉中断时,同时设置了mip,此时产生了另一个中断则其会被pending,则MIP里对应的中断信息会被记录。
MEIP:M模式外部中断挂起位
SEIP:S模式外部中断挂起位
MTIP:M模式timer中断挂起位
STIP:S模式外部中断挂起位
MSIP:M模式软中断挂起位
SSIP:S模式软中断挂起位
MSCRATCH
mscratch 寄存器用于机器模式下的程序临时保存某些数据。mscratch 寄存器可以提供一
种快速的保存和恢复机制。譬如,在进入机器模式的异常处理程序后,将应用程序的某个通
用寄存器的值临时存入 mscratch 寄存器中,然后在退出异常处理程序之前,将 mscratch 寄
存器中的值读出恢复至通用寄存器。
CSR Instructions
Register to Register instructions
在系统的两个寄存器上执行指定的操作,并将结果留在指定的寄存器中。
CSRRC
CSRRC:CSR Read and Clear Bits,用于清除CSR。
将之前CSR的值复制到目的寄存器,然后将CSR的一些选定位清除为0,rs1的值作为位掩码,用于选择CSR中哪些位需要清除(逻辑与 and)。
例子:
csrrc x1, mcause, x2 将之前的mcause读取到x1,并与x2逻辑与
CSRR
CSRR:CSR Read,用于读取CSR。
CSRR指令用于读取CSR的值。将CSR的前一个值复制到目标寄存器。这是一个原子读取操作。
例子:
csrr x1, mtvec 读取mtvec到x1
CSRRW
CSRRW:CSR Read and Write,用于读写CSR。
将CSR的前一个值复制到目标寄存器,源寄存器的值(rs1)被复制到CSR,这是一个原子写操作。要读取CSR而不写入它,源寄存器(rs1)可以指定为x0。要编写CSR而不读取它,目标寄存器(rd)可以指定为x0。这是一个原子操作。
简单来说就是rd是读CSR到rd中,rs1是将rs1的值写入到CSR。
例子:
csrrw x0, mtvec, x1 将x1中的值写入mtvec
csrrw x1, mtvec, x0 读取mtvec到x1
csrrw x1, mtvec, x2 读取之前mtvec到x1,将x2写入mtvec
CSRRS
CSRRS:CSR Read and Set Bits,用于设置CSR的位。
将CSR之前的值复制到目标寄存器,然后将CSR的某些位设置为0,rs1中的值用作位掩码,用于选择在CSR中设置哪些位(逻辑或 or)。
例子:
csrrs x1, mstatus, x2 读取mstatus到x1,并与x2逻辑或
Immediate Instructions
CSRRCI
CSRRCI:CSR Read and Clear Immediate
将之前CSR的值复制到目的寄存器,然后将立即数与CSR进行逻辑与操作,清除CSR指定的位。
例子:
csrrci x1, mie, 3 保存mie的值到x1中,并将mie与3按位与
其他的寄存器与上述寄存器到寄存器的指令同理
Trap
Exception
异常通常是同步的,并且总是与程序集指令相关联。异常可能在指令执行的任何阶段出现。例如,在指令解码阶段,硬件可能会检测到一个错误的操作码字段。这将触发一个“非法指令”异常。当异常发生时,硬件用相应的异常代码设置mcause寄存器。
pc被设置为trap处理程序的基地地址。异常代码有助于识别异常的类型。在RISC-V中可能的异常列在表中
Illegal instruction (非法指令异常):当程序试图执行任何非法指令时,会发生异常。例如,试图写入只读CSR寄存器将产生非法指令异常。
Instruction/Load/Store address misaligned (指令地址错位异常):当程序试图执行无条件跳转或执行目标地址不是4字节对齐的分支时,会发生异常。例如,执行一个起始地址为0x80000001的程序。这将在无条件跳转时生成一个指令地址错位异常。
Instruction/Load/Store access fault (访问异常):当程序试图执行加载指令以访问来自未对齐地址或非4字节对齐的地址的数据时,会发生异常。例如,试图访问一个数据段而没有正确对齐,就会导致这个异常。
Environment call (环境调用异常):当程序执行系统调用时发生此异常。需要使用RISC-V的ecall调用指令。调用指令还可以用于从低权限模式切换到高权限模式。指令:ecall
Break point :当程序执行程序中设置的断点以进入调试模式时,会发生异常。
Handle Exception
一旦发生异常,处理器将停止执行并将控制传递给trap处理程序。
在此过程中,处理器特权被设置为Machine模式,处理器使用异常代码设置mcause寄存器。mepc设置为发生异常前指令所在的pc。所有异常都首先出现在机器模式trap处理程序中。这适用于来自不同特权级别的异常。机器模式trap处理程序在机器模式中执行。在trap处理程序中,首先寄存器的上下文被保存在栈中。然后处理trap。在此之后,栈中保存的上下文将被恢复。通过这种方式,可以在不给执行流造成太多麻烦的情况下处理trap。
硬件如何跳转到trap处理程序 这是通过使用trap处理程序的物理地址设置mtvec寄存器来建立的。通常将mtvec中的值称为“Trap entry”。
我们有时可能不希望在Machine Mode中处理异常。我们可能想把它弄进去
管理员模式甚至用户模式。因此,可以将一些或所有trap“delegate”委托给较低的特权级别。
MRET:机器模式Trap处理程序返回(MRET)用于从正在机器模式中执行的Trap处理程序返回。
一旦trap服务和保存的上下文被恢复。可以调用mret指令。
这条指令基本上是告诉处理器将控制权传递回mepc寄存器中的地址。来自较低特权级别的异常。MRET指令将控制转移到该特权级别。状态寄存器的MPP字段将被引用,以确定返回到哪个模式(m, s,或u)。返回将通过将保存的程序计数器从mepc复制到程序计数器(pc)来实现。
Exception Registers
mie、mstatus、mepc、mtvec、mcause等。参考CSR章节。
Interrupt
中断是由外部源触发的异步事件。处理器可能倾向于处理或忽略中断。中断可以是软件中断,也可以是硬件中断。在RISC-V中断中,分为定时器中断(Timer Interrupts)、软件中断(Software Interrupts)和外部中断(External Interrupts)。外部中断也称为全局中断。定时器中断在core中处理。软件中断是处理器内部(核间中断)的,外部中断由PLIC模块处理。在本章中,我们将学习如何在RISC-V中处理定时器和外部中断。
Timer Interrupts
当一个单独的定时器电路指示一个预定的间隔已经结束时,timer interrupt就会产生。将中断当前正在执行的代码。定时器中断由操作系统处理,操作系统使用它们来实现时间片多线程。
mtime Register
是一个同步计数器。它从处理器上电开始运行,并以滴答数提供当前的实时时间。
mtimecmp Register
这个寄存器用于存储计时器中断将要发生的时间。
mtimecmp的值与mtime进行比较。当mtime值大于mtimecmp时,发生定时器中断。mtime和mtimecmp寄存器都是64位内存映射寄存器。
External Interrupts
External Interrupts外部中断来自处理器外部,这种中断是异步的,由外部源通过硬件产生,由处理器处理。例如,在嵌入式过程控制系统中使用的RISC-V处理器可能会接收来自各种要求采取适当行动的传感器的外部中断。这些中断由平台级中断控制器(PLIC)处理。PLIC的中断源是连接到SoC (IO, UART, SPI等)的设备。根据RISC-V规范,这些被称为全局中断源,每个中断源被PLIC优先排序并路由到核心。
Software Interrupts
Software Interrupts软中断是由在机器状态字中设置一个位引起的。在多核芯片中,运行在一个核上的线程需要向另一个核发送中断信号。
先自我介绍一下,小编13年上师交大毕业,曾经在小公司待过,去过华为OPPO等大厂,18年进入阿里,直到现在。深知大多数初中级java工程师,想要升技能,往往是需要自己摸索成长或是报班学习,但对于培训机构动则近万元的学费,着实压力不小。自己不成体系的自学效率很低又漫长,而且容易碰到天花板技术停止不前。因此我收集了一份《java开发全套学习资料》送给大家,初衷也很简单,就是希望帮助到想自学又不知道该从何学起的朋友,同时减轻大家的负担。添加下方名片,即可获取全套学习资料哦
边栏推荐
猜你喜欢

【黄啊码】MySQL入门—3、我用select ,老板直接赶我坐火车回家去,买的还是站票

ScheduledExecutorService - 定时周期执行任务

Pytorch学习记录(七):自定义模型 & Auto-Encoders

MySQL 5.7 安装教程(全步骤、保姆级教程)

mysql安装教程【安装版】

Ubuntu安装Mysql5.7

刷题《剑指Offer》day06

Small application project development, jingdong mall 】 【 uni - app custom search component (below) - search history

vscode输出中文乱码问题

Cloud server deployment web project
随机推荐
ScheduledExecutorService - 定时周期执行任务
MySQL 日期时间类型精确到毫秒
google搜索技巧——程序员推荐
功能强大的国产Api管理工具
Docker-compose安装mysql
【C#】说说 C# 9 新特性的实际运用
SQL join table (inner join, left join, right join, cross join, full outer join)
Flutter Paystack 所有选项实现
利用frp服务器进行内网穿透ssh访问
一文搞定代码中的命名
MySQL 操作语句大全(详细)
How on one machine (Windows) to install two MYSQL database
二维坐标工具API
Ubuntu安装Mysql5.7
How to Install MySQL on Linux
模块化规范
【Unity】编辑器扩展-02-拓展Hierarchy视图
35-Jenkins-共享库应用
信息收集-DNS
编译器R8问题Multidex