当前位置:网站首页>Object detection based on OpenCV haarcascades
Object detection based on OpenCV haarcascades
2022-07-04 23:03:00 【Just_ Paranoid】
OpenCV:https://github.com/opencv/opencv
haarcascades - This folder contains a specific type of classifier trained to detect objects , for example Face ( positive 、 The side )、 Pedestrians, etc . Some classifiers have a special license. Please check the file for details .
OpenCV Already contains many for the face , eyes , Pre classifier of smiling face, etc . these XML Files are stored in opencv/data/haarcascades/ In the folder
OpenCV The trainer and detector are attached . If you want a car , Aircraft and any other objects train your own classifier , You can use OpenCV Create a . Its full details are given here : Cascade classifier training .
https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
# openCV Common usage
# Import opencv library
import os
import cv2
# Recognize faces in pictures : Use haarcascade_frontalface_default.xml
def face_detect(img_path):
# Initialize model
detector = cv2.CascadeClassifier('../haarcascades/haarcascade_frontalface_default.xml')
# Initialize window
cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE)
# Read the picture
img = cv2.imread(img_path)
# display picture
# cv2.imshow('image', img)
# Convert to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Face detection
dets = detector.detectMultiScale(img_gray, 1.1, 5)
# Get face frame
faces = []
for i, d in enumerate(dets):
x1 = d[0] if d[0] > 0 else 0
y1 = d[1] if d[1] > 0 else 0
x2 = d[0] + d[2] if d[0] + d[2] > 0 else 0
y2 = d[1] + d[3] if d[1] + d[3] > 0 else 0
# Show face box
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Save the picture
cv2.imwrite('../result/face_detect_1.jpg', img)
# Display picture tag face box
# cv2.imshow('image', img)
# Wait for the window to close
# cv2.waitKey(0)
# Eye detection : Use haarcascade_eye_tree_eyeglasses.xml
def eye_detect(img_path):
# Initialize model
detector = cv2.CascadeClassifier('../haarcascades/haarcascade_eye_tree_eyeglasses.xml')
# Initialize window
cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE)
# Read the picture
img = cv2.imread(img_path)
# display picture
# cv2.imshow('image', img)
# Convert to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Eye detection
dets = detector.detectMultiScale(img_gray, 1.1, 5)
# Get eye frame
faces = []
for i, d in enumerate(dets):
x1 = d[0] if d[0] > 0 else 0
y1 = d[1] if d[1] > 0 else 0
x2 = d[0] + d[2] if d[0] + d[2] > 0 else 0
y2 = d[1] + d[3] if d[1] + d[3] > 0 else 0
# Show face box
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Save the picture
cv2.imwrite('../result/eye_detect_1.jpg', img)
# Display picture tag face box
cv2.imshow('image', img)
# Wait for the window to close
cv2.waitKey(0)
def eye_detect_save(img_path, filename):
# Initialize model
detector = cv2.CascadeClassifier('../haarcascades/haarcascade_eye_tree_eyeglasses.xml')
# Read the picture
img = cv2.imread(img_path)
# Convert to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Eye detection
dets = detector.detectMultiScale(img_gray, 1.1, 5)
# Get eye frame
faces = []
for i, d in enumerate(dets):
x1 = d[0] if d[0] > 0 else 0
y1 = d[1] if d[1] > 0 else 0
x2 = d[0] + d[2] if d[0] + d[2] > 0 else 0
y2 = d[1] + d[3] if d[1] + d[3] > 0 else 0
# Show face box
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Save the picture
save_path = '../result/' + filename
cv2.imwrite(save_path, img)
# Eye detection : Use haarcascade_eye.xml
def eye_detect_2(img_path):
# Initialize model
detector = cv2.CascadeClassifier('../haarcascades/haarcascade_eye.xml')
# Initialize window
cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE)
# Read the picture
img = cv2.imread(img_path)
# display picture
# cv2.imshow('image', img)
# Convert to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Eye detection
dets = detector.detectMultiScale(img_gray, 1.1, 5)
# Get eye frame
faces = []
for i, d in enumerate(dets):
x1 = d[0] if d[0] > 0 else 0
y1 = d[1] if d[1] > 0 else 0
x2 = d[0] + d[2] if d[0] + d[2] > 0 else 0
y2 = d[1] + d[3] if d[1] + d[3] > 0 else 0
# Show face box
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Save the picture
cv2.imwrite('../result/eye_detect2_1.jpg', img)
# Display picture tag face box
cv2.imshow('image', img)
# Wait for the window to close
cv2.waitKey(0)
# Portrait detection :haarcascade_profileface.xml
def profile_face(img_path):
# Initialize model
detector = cv2.CascadeClassifier('../haarcascades/haarcascade_profileface.xml')
# Initialize window
cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE)
# Read the picture
img = cv2.imread(img_path)
# display picture
# cv2.imshow('image', img)
# Convert to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Eye detection
dets = detector.detectMultiScale(img_gray, 1.1, 5)
# Get eye frame
faces = []
for i, d in enumerate(dets):
x1 = d[0] if d[0] > 0 else 0
y1 = d[1] if d[1] > 0 else 0
x2 = d[0] + d[2] if d[0] + d[2] > 0 else 0
y2 = d[1] + d[3] if d[1] + d[3] > 0 else 0
# Show face box
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Save the picture
cv2.imwrite('../result/profile_face_6.jpg', img)
# Display picture tag face box
cv2.imshow('image', img)
# Wait for the window to close
cv2.waitKey(0)
# Smile detection :haarcascade_smile.xml
def smile_detect(img_path):
# Initialize model
detector = cv2.CascadeClassifier('../haarcascades/haarcascade_smile.xml')
# Initialize window
cv2.namedWindow('image', cv2.WINDOW_AUTOSIZE)
# Read the picture
img = cv2.imread(img_path)
# display picture
# cv2.imshow('image', img)
# Convert to grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Eye detection
dets = detector.detectMultiScale(img_gray, 1.1, 5)
# Get eye frame
faces = []
for i, d in enumerate(dets):
x1 = d[0] if d[0] > 0 else 0
y1 = d[1] if d[1] > 0 else 0
x2 = d[0] + d[2] if d[0] + d[2] > 0 else 0
y2 = d[1] + d[3] if d[1] + d[3] > 0 else 0
# Show face box
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Save the picture
cv2.imwrite('../result/smile_detect_1.jpg', img)
# Display picture tag face box
cv2.imshow('image', img)
# Wait for the window to close
cv2.waitKey(0)
if __name__ == '__main__':
print('PyCharm')
# face_detect('../face/face01.jpg')
# eye_detect('../face/face01.jpg')
# eye_detect_2('../face/face01.jpg')
# profile_face('../face/face06.jpg')
# smile_detect('../face/face08.jpg')
# Traverse face Folder Output Eye detection Output Mark to result Folder
for dirpath, dirnames, filenames in os.walk('../face'):
for filename in filenames:
print(os.path.join(dirpath, filename))
eye_detect_save(os.path.join(dirpath, filename), filename)
边栏推荐
- ECS settings SSH key login
- 【ODX Studio編輯PDX】-0.2-如何對比Compare兩個PDX/ODX文件
- colResizable. JS auto adjust table width plug-in
- Redis getting started complete tutorial: hash description
- 【剑指offer】1-5题
- JS 3D explosive fragment image switching JS special effect
- [odx Studio Edit pdx] - 0.2 - Comment comparer deux fichiers pdx / odx
- UML diagram memory skills
- A complete tutorial for getting started with redis: hyperloglog
- Google collab trample pit
猜你喜欢
Excel 快捷键-随时补充
攻防世界 MISC 高手进阶区 001 normal_png
共创软硬件协同生态:Graphcore IPU与百度飞桨的“联合提交”亮相MLPerf
Analysis of the self increasing and self decreasing of C language function parameters
Redis入门完整教程:初识Redis
Redis getting started complete tutorial: Key Management
Redis入门完整教程:有序集合详解
攻防世界 MISC 进阶区 can_has_stdio?
Set up a website with a sense of ceremony, and post it to 1/2 of the public network through the intranet
智力考验看成语猜古诗句微信小程序源码
随机推荐
vim编辑器知识总结
【二叉树】节点与其祖先之间的最大差值
Wechat official account solves the cache problem of entering from the customized menu
Erik baleog and Olaf, advanced area of misc in the attack and defense world
A complete tutorial for getting started with redis: getting to know redis for the first time
Redis getting started complete tutorial: hash description
How to send a reliable request before closing the page
UML图记忆技巧
【ODX Studio編輯PDX】-0.2-如何對比Compare兩個PDX/ODX文件
Redis入门完整教程:客户端通信协议
Breakpoint debugging under vs2019 c release
Duplicate ADMAS part name
Attack and defense world misc advanced area Hong
Attack and Defense World MISC Advanced Area Erik baleog and Olaf
Redis introduction complete tutorial: Collection details
Google Earth engine (GEE) - tasks upgrade enables run all to download all images in task types with one click
Redis入门完整教程:Bitmaps
Insert sort, select sort, bubble sort
Redis入门完整教程:慢查询分析
ETCD数据库源码分析——处理Entry记录简要流程