当前位置:网站首页>2022杭电多校 第6场 1008.Shinobu Loves Segment Tree 规律题
2022杭电多校 第6场 1008.Shinobu Loves Segment Tree 规律题
2022-08-05 10:08:00 【HeartFireY】
题目分析
本题解时间复杂度 O ( T log n ) O(T\log n) O(Tlogn),标程 O ( T log 2 n ) O(T \log^2 n) O(Tlog2n)
发现每个节点的按顺序 b u i l d build build产生的加法序列的规律:(若干个 1 1 1)+(相同个数个 2 , 3 , 4... 2,3,4... 2,3,4...)+(若干个相同数字),然后发现加 2 , 3 , 4 , . . . 2,3,4,... 2,3,4,...的次数与层节点个数有关。即为加 2 ⌊ l o g 2 x ⌋ 2^{ {\lfloor log_2{x} \rfloor}} 2⌊log2x⌋次 2 , 3 , 4 , … 2,3,4,\dots 2,3,4,…。
这个规律可以通过 1. 1. 1.分析线段树 b u i l d build build性质 2. 2. 2.暴力打表(牛逼) 发现
那么我们可以写成式子:假设加法序列长度为 s i z siz siz,加 1 1 1的个数为 c n t 1 cnt_1 cnt1,那么该节点 r t rt rt的加和可以表示为:
c n t 1 + ( ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 1 ) × ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 2 ) 2 − 1 ) × 2 ⌊ l o g 2 x ⌋ + [ ( s i z − c n t 1 ) m o d ( 2 ⌊ l o g 2 x ⌋ ) ) ] × ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 2 ) cnt_1 + (\frac{(\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 1) \times (\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 2)}{2} - 1) \times 2^{ {\lfloor log_2{x} \rfloor}} + [(siz - cnt_1) \mod (2^{ {\lfloor log_2{x} \rfloor}}))] \times (\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 2) cnt1+(2((2⌊log2x⌋)(siz−cnt1)+1)×((2⌊log2x⌋)(siz−cnt1)+2)−1)×2⌊log2x⌋+[(siz−cnt1)mod(2⌊log2x⌋))]×((2⌊log2x⌋)(siz−cnt1)+2)加的数字个数 s i z siz siz的规律,对于当前节点 r t rt rt:
- ⌈ ( r t − 2 ⌊ l o g 2 r t ⌋ ) / 2 ⌉ m o d 2 = = 1 , s i z − = 2 ⌊ l o g 2 r t ⌋ − 2 \lceil(rt - 2^{\lfloor log_2{rt} \rfloor}) / 2 \rceil \mod2 == 1, siz -= 2^{\lfloor log_2{rt} \rfloor - 2} ⌈(rt−2⌊log2rt⌋)/2⌉mod2==1,siz−=2⌊log2rt⌋−2
- ⌈ ( r t − 2 ⌊ l o g 2 r t ⌋ ) / 2 ⌉ m o d 2 = = 0 , s i z − = 2 ⌊ l o g 2 r t ⌋ − 1 \lceil(rt - 2^{\lfloor log_2{rt} \rfloor}) / 2 \rceil \mod2 == 0, siz -= 2^{\lfloor log_2{rt} \rfloor - 1} ⌈(rt−2⌊log2rt⌋)/2⌉mod2==0,siz−=2⌊log2rt⌋−1
求 s i z siz siz时,可以令 s i z = n siz = n siz=n,然后沿着树上路径(实际上对应数字的二进制位)向上走,然后减去当前节点对应该减的值。
1 1 1的规律:可以 O ( 1 ) O(1) O(1)求:
c n t 1 = { 2 ( ⌊ l o g 2 x ⌋ − 1 ) , ( x − 2 ⌊ l o g 2 x ⌋ + 1 ) m o d 2 = 1 2 ⌊ l o g 2 x ⌋ , ( x − 2 ⌊ l o g 2 x ⌋ + 1 ) m o d 2 = 0 cnt_1 =\left\{\begin{matrix} 2^{({\lfloor log_2{x} \rfloor} - 1)},\ (x - 2^{ {\lfloor log_2{x} \rfloor}} + 1) \mod 2 =1 \\ 2^{ {\lfloor log_2{x} \rfloor}},\ (x - 2^{ {\lfloor log_2{x} \rfloor}} + 1) \mod 2 = 0 \end{matrix}\right. cnt1={ 2(⌊log2x⌋−1), (x−2⌊log2x⌋+1)mod2=12⌊log2x⌋, (x−2⌊log2x⌋+1)mod2=0注意,当 s i z < 0 siz < 0 siz<0时,特判输出 0 0 0,对第一层求 s i z siz siz时也要特判避免溢出。同时对 n = 1 n = 1 n=1的 4 4 4种情况也要特判,避免溢出。
Code
#include <bits/stdc++.h>
#pragma gcc optimize("O2")
#pragma g++ optimize("O2")
#define int long long
#define endl '\n'
using namespace std;
const int N = 2e5 + 10, MOD = 1e9 + 7;
inline void solve(){
int n = 0, x = 0; cin >> n >> x;
if(n == 1 && x == 1){
cout << 1 << endl; return; }
else if(n == 1 && x != 1){
cout << 0 << endl; return; }
if(x == 1){
cout << (n * (n + 1) / 2) << endl; return; }
//cout << "FUCK:" << get_range(x) << endl;
//if(x > get_range(x)){ cout << 0 << endl; return; }
int ceng = log2(x), ceng_fir = (1 << (ceng));
int cnt1 = ((x - ceng_fir + 1) % 2) ? (1 << (ceng - 1)) : ceng_fir;
if((x - ceng_fir + 1) == 0) cnt1 = ceng_fir;
// cnt_1 -> 1的个数
int siz = n;
int rt = x;
while(rt != 2 && rt != 3){
// cout << rt << " BEF | ";
int ceng_now = log2(rt) + 1, ser = rt - (1 << (ceng_now - 1)) + 1;
int md = ser % 4;
if(md == 1 || md == 2) siz -= (1 << (ceng_now - 3));
if(md == 3 || md == 0) siz -= (1 << (ceng_now - 2));
rt >>= 1;
// cout << rt << " AFT " << endl;
// cout << siz << endl;
}
if(rt != 1) siz -= 1;
if(siz <= 0){
cout << 0 << endl;
return;
}
if(siz <= cnt1){
cout << siz << endl;
return;
}
int yu = (siz - cnt1) % (ceng_fir), m = (siz - cnt1) / (ceng_fir);
int ans = yu * (m + 2) + cnt1 + ceng_fir * ((m + 1) * (m + 2) / 2 - 1);
cout << ans << endl;
}
signed main(){
ios_base::sync_with_stdio(false), cin.tie(0);
cout << fixed << setprecision(12);
int t = 1; cin >> t;
while(t--) solve();
return 0;
}
边栏推荐
猜你喜欢

C语言的高级用法
![[强网杯2022]WP-UM](/img/3d/caeab05ddca278af274dbf6e2f8ba1.png)
[强网杯2022]WP-UM

【AGC】增长服务1-远程配置示例

three objects are arranged in a spherical shape around the circumference

The JVM collection that Alibaba's top architects have summarized for many years, where can't I check it!

Still looking for a network backup resources?Hurry up to collect the following network backup resource search artifact it is worth collecting!

leetcode: 529. 扫雷游戏

How can project cost control help project success?

阿里顶级架构师多年总结的JVM宝典,哪里不会查哪里!

Redis源码解析:Redis Cluster
随机推荐
High-quality DeFi application building guide to help developers enjoy DeFi Summer
微服务 技术栈
[Office] Collection of Microsoft Office download addresses (offline installation and download of Microsoft's official original version)
uniapp 连接ibeacon
19.服务器端会话技术Session
LeetCode 216. Combined Sum III (2022.08.04)
5.部署web项目到云服务器
Jenkins manual (2) - software configuration
Technical dry goods | Hausdorff distance for image segmentation based on MindSpore
皕杰报表的下拉框联动
MySQL advanced (twenty-seven) database index principle
项目成本控制如何帮助项目成功?
Pycharm 常用外部工具
创建一个 Dapp,为什么要选择波卡?
【MindSpore Easy-Diantong Robot-01】You may have seen many knowledge quiz robots, but this one is a bit different
mysql进阶(二十七)数据库索引原理
three.js调试工具dat.gui使用
2022 Huashu Cup Mathematical Modeling Ideas Analysis and Exchange
matcher中find,matches,lookingAt匹配字符串的不同之处说明
Where is your most secretive personality?