当前位置:网站首页>2022杭电多校 第6场 1008.Shinobu Loves Segment Tree 规律题
2022杭电多校 第6场 1008.Shinobu Loves Segment Tree 规律题
2022-08-05 10:08:00 【HeartFireY】
题目分析
本题解时间复杂度 O ( T log n ) O(T\log n) O(Tlogn),标程 O ( T log 2 n ) O(T \log^2 n) O(Tlog2n)
发现每个节点的按顺序 b u i l d build build产生的加法序列的规律:(若干个 1 1 1)+(相同个数个 2 , 3 , 4... 2,3,4... 2,3,4...)+(若干个相同数字),然后发现加 2 , 3 , 4 , . . . 2,3,4,... 2,3,4,...的次数与层节点个数有关。即为加 2 ⌊ l o g 2 x ⌋ 2^{ {\lfloor log_2{x} \rfloor}} 2⌊log2x⌋次 2 , 3 , 4 , … 2,3,4,\dots 2,3,4,…。
这个规律可以通过 1. 1. 1.分析线段树 b u i l d build build性质 2. 2. 2.暴力打表(牛逼) 发现
那么我们可以写成式子:假设加法序列长度为 s i z siz siz,加 1 1 1的个数为 c n t 1 cnt_1 cnt1,那么该节点 r t rt rt的加和可以表示为:
c n t 1 + ( ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 1 ) × ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 2 ) 2 − 1 ) × 2 ⌊ l o g 2 x ⌋ + [ ( s i z − c n t 1 ) m o d ( 2 ⌊ l o g 2 x ⌋ ) ) ] × ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 2 ) cnt_1 + (\frac{(\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 1) \times (\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 2)}{2} - 1) \times 2^{ {\lfloor log_2{x} \rfloor}} + [(siz - cnt_1) \mod (2^{ {\lfloor log_2{x} \rfloor}}))] \times (\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 2) cnt1+(2((2⌊log2x⌋)(siz−cnt1)+1)×((2⌊log2x⌋)(siz−cnt1)+2)−1)×2⌊log2x⌋+[(siz−cnt1)mod(2⌊log2x⌋))]×((2⌊log2x⌋)(siz−cnt1)+2)加的数字个数 s i z siz siz的规律,对于当前节点 r t rt rt:
- ⌈ ( r t − 2 ⌊ l o g 2 r t ⌋ ) / 2 ⌉ m o d 2 = = 1 , s i z − = 2 ⌊ l o g 2 r t ⌋ − 2 \lceil(rt - 2^{\lfloor log_2{rt} \rfloor}) / 2 \rceil \mod2 == 1, siz -= 2^{\lfloor log_2{rt} \rfloor - 2} ⌈(rt−2⌊log2rt⌋)/2⌉mod2==1,siz−=2⌊log2rt⌋−2
- ⌈ ( r t − 2 ⌊ l o g 2 r t ⌋ ) / 2 ⌉ m o d 2 = = 0 , s i z − = 2 ⌊ l o g 2 r t ⌋ − 1 \lceil(rt - 2^{\lfloor log_2{rt} \rfloor}) / 2 \rceil \mod2 == 0, siz -= 2^{\lfloor log_2{rt} \rfloor - 1} ⌈(rt−2⌊log2rt⌋)/2⌉mod2==0,siz−=2⌊log2rt⌋−1
求 s i z siz siz时,可以令 s i z = n siz = n siz=n,然后沿着树上路径(实际上对应数字的二进制位)向上走,然后减去当前节点对应该减的值。
1 1 1的规律:可以 O ( 1 ) O(1) O(1)求:
c n t 1 = { 2 ( ⌊ l o g 2 x ⌋ − 1 ) , ( x − 2 ⌊ l o g 2 x ⌋ + 1 ) m o d 2 = 1 2 ⌊ l o g 2 x ⌋ , ( x − 2 ⌊ l o g 2 x ⌋ + 1 ) m o d 2 = 0 cnt_1 =\left\{\begin{matrix} 2^{({\lfloor log_2{x} \rfloor} - 1)},\ (x - 2^{ {\lfloor log_2{x} \rfloor}} + 1) \mod 2 =1 \\ 2^{ {\lfloor log_2{x} \rfloor}},\ (x - 2^{ {\lfloor log_2{x} \rfloor}} + 1) \mod 2 = 0 \end{matrix}\right. cnt1={ 2(⌊log2x⌋−1), (x−2⌊log2x⌋+1)mod2=12⌊log2x⌋, (x−2⌊log2x⌋+1)mod2=0注意,当 s i z < 0 siz < 0 siz<0时,特判输出 0 0 0,对第一层求 s i z siz siz时也要特判避免溢出。同时对 n = 1 n = 1 n=1的 4 4 4种情况也要特判,避免溢出。
Code
#include <bits/stdc++.h>
#pragma gcc optimize("O2")
#pragma g++ optimize("O2")
#define int long long
#define endl '\n'
using namespace std;
const int N = 2e5 + 10, MOD = 1e9 + 7;
inline void solve(){
int n = 0, x = 0; cin >> n >> x;
if(n == 1 && x == 1){
cout << 1 << endl; return; }
else if(n == 1 && x != 1){
cout << 0 << endl; return; }
if(x == 1){
cout << (n * (n + 1) / 2) << endl; return; }
//cout << "FUCK:" << get_range(x) << endl;
//if(x > get_range(x)){ cout << 0 << endl; return; }
int ceng = log2(x), ceng_fir = (1 << (ceng));
int cnt1 = ((x - ceng_fir + 1) % 2) ? (1 << (ceng - 1)) : ceng_fir;
if((x - ceng_fir + 1) == 0) cnt1 = ceng_fir;
// cnt_1 -> 1的个数
int siz = n;
int rt = x;
while(rt != 2 && rt != 3){
// cout << rt << " BEF | ";
int ceng_now = log2(rt) + 1, ser = rt - (1 << (ceng_now - 1)) + 1;
int md = ser % 4;
if(md == 1 || md == 2) siz -= (1 << (ceng_now - 3));
if(md == 3 || md == 0) siz -= (1 << (ceng_now - 2));
rt >>= 1;
// cout << rt << " AFT " << endl;
// cout << siz << endl;
}
if(rt != 1) siz -= 1;
if(siz <= 0){
cout << 0 << endl;
return;
}
if(siz <= cnt1){
cout << siz << endl;
return;
}
int yu = (siz - cnt1) % (ceng_fir), m = (siz - cnt1) / (ceng_fir);
int ans = yu * (m + 2) + cnt1 + ceng_fir * ((m + 1) * (m + 2) / 2 - 1);
cout << ans << endl;
}
signed main(){
ios_base::sync_with_stdio(false), cin.tie(0);
cout << fixed << setprecision(12);
int t = 1; cin >> t;
while(t--) solve();
return 0;
}
边栏推荐
- 浅析WSGI协议
- egg框架使用(一)
- IO流篇 -- 基于io流实现文件夹拷贝(拷贝子文件夹及子文件夹内文件)满满的干货
- 微服务 技术栈
- 无题八
- Analysis and practice of antjian webshell dynamic encrypted connection
- Technical dry goods | Hausdorff distance for image segmentation based on MindSpore
- Getting started with Polkadot parachain development, this article is enough
- 第六章:activiti流程分流判断之排它网关和并行网关
- 【 temperature warning program DE development 】 event driven model instance
猜你喜欢
多线程(进阶) - 2.5w字总结
The founder of the DFINITY Foundation talks about the ups and downs of the bear market, and where should DeFi projects go?
茄子科技CEO仇俊:以用户为中心,做用户真正需要的产品
还在找网盘资源吗?快点收藏如下几个值得收藏的网盘资源搜索神器吧!
百年北欧奢华家电品牌ASKO智能三温区酒柜臻献七夕,共品珍馐爱意
我们的Web3创业项目,黄了
Our Web3 Entrepreneurship Project, Yellow
[Strong Net Cup 2022] WP-UM
First Decentralized Heist?Loss of nearly 200 million US dollars: analysis of the attack on the cross-chain bridge Nomad
【温度预警程序de开发】事件驱动模型实例运用
随机推荐
Egg framework usage (1)
偏向锁/轻量锁/重级锁锁锁更健康,上锁解锁到底是怎么完成实现的
MySQL advanced (twenty-seven) database index principle
正则表达式replaceFirst()方法具有什么功能呢?
第三章 : redis数据结构种类
Complete image segmentation efficiently based on MindSpore and realize Dice!
19. Server-side session technology Session
hcip BGP 增强实验
Huawei's lightweight neural network architecture GhostNet has been upgraded again, and G-GhostNet (IJCV22) has shown its talents on the GPU
Voice conversion相关语音数据集综合汇总
Meteorological data processing example - matlab string cutting matching and R language date matching (data splicing)
Oracle temporary table space role
uniapp connect ibeacon
阿里顶级架构师多年总结的JVM宝典,哪里不会查哪里!
How does the official account operate and maintain?Public account operation and maintenance professional team
第四章:activiti RuntimeService设置获和取流程变量,及与taskService的区别,开始和完成任务时设置流程变量[通俗易懂]
技术干货 | 基于 MindSpore 实现图像分割之豪斯多夫距离
What is SPL?
[强网杯2022]WP-UM
MySQL使用聚合函数可以不搭配GROUP BY分组吗?