当前位置:网站首页>Pytorch深度学习快速入门教程 -- 土堆教程笔记(三)
Pytorch深度学习快速入门教程 -- 土堆教程笔记(三)
2022-08-05 09:14:00 【TARS_90%Honesty】
Pytorch入门学习(三)
现有网络模型的使用及修改
- 以vgg16网络模型为例,最后分类是1000类,而使用的CIFAR10数据集需要最后分成10类,因此需要进行网络模型的修改。
- 直接添加线性层
- 修改最后线性层的参数
- 代码
# torchvision.models.vgg16(pretrained: bool = False, progress: bool = True, **kwargs)
# pretrained (bool) – If True, returns a model pre-trained on ImageNet
# progress (bool) – If True, displays a progress bar of the download to stderr
# 参数pretrained:为True代表下载的网络模型中的参数已经在ImageNet数据集中训练好了,预训练
# 为False代表下载的网络模型中的参数为初始值,并没有训练过
# 参数progress为True,显示下载进度条
import torchvision
# ../代表返回上一路径,通常./就可以
# train_data = torchvision.datasets.ImageNet("./ImageNet", split="train", transform=torchvision.transforms.ToTensor(),download = True)
# RuntimeError: The archive ILSVRC2012_devkit_t12.tar.gz is not present in the root directory or is corrupted.
# You need to download it externally and place it in ./ImageNet.
from torch import nn
vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
# print(vgg16_true)
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, download=True,
transform=torchvision.transforms.ToTensor())
# 如何改进现有的网络去实现自己的目标
# Vgg16训练好的模型,最后为1000类,而CIFAR10为10类
# 第一种实现,最后添加Linear层,将1000类转换成10类
# vgg16_true.add_module("add_linear", nn.Linear(1000, 10))
# print(vgg16_true)
# 第二种实现,在classifier中添加Linear层
# vgg16_true.classifier.add_module("add_linear", nn.Linear(1000, 10))
# print(vgg16_true)
# 第三种实现,直接修改VGG16模型最后Linear层的参数
print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)
网络模型的保存和读取
- 方式一:网络结构 + 网络参数
- 方式二:网络参数,以字典形式
保存
# 保存网络模型
import torch
import torchvision
from torch import nn
vgg16_false = torchvision.models.vgg16(pretrained=False)
# 保存方式一:网络模型结构 + 网络参数
# torch.save(vgg16_false, "vgg16_method1.pth")
# 保存方式二:网络参数,以字典形式(官方推荐)
# torch.save(vgg16_false.state_dict(), "vgg16_method2.pth")
# 针对自己定义的网络模型,采用方式一进行保存,会有陷阱
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
def forward(self, x):
x = self.conv1(x)
return x
myModule = MyModule()
# 采用方式一保存
torch.save(myModule, "myModule_method1.pth")
读取
# 加载网络模型
import torch
import torchvision
from torch import nn
from model_save import *
# 加载方式一,对应保存方式一
# model = torch.load("vgg16_method1.pth")
# print(model)
# 加载方式二,对应保存方式二:获取网络参数字典,创建新的网络结构,导入网络参数
# model_dict = torch.load("vgg16_method2.pth")
# print(model_dict)
# vgg16 = torchvision.models.vgg16(pretrained=False)
# vgg16.load_state_dict(model_dict)
# print(vgg16)
# 针对自己定义的网络模型,采用方式一进行加载时,还需要添加网络模型的定义部分,实例部分不需要,否则报错
# 如果不想复制自定义网络模型的定义语句,可以添加一句from model_save import * 也可以
# class MyModule(nn.Module):
# def __init__(self) -> None:
# super().__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
# def forward(self, x):
# x = self.conv1(x)
# return x
myModule = torch.load("myModule_method1.pth")
# 如果不添加网络模型的定义,则会报错
# AttributeError: Can't get attribute 'MyModule' on <module '__main__' from xxx
print(myModule)
完整的模型训练套路
套路(一)
- 代码
- model.py
import torch
from torch import nn
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# 测试网络
if __name__ == '__main__':
myModule = MyModule()
# 卷积层对输入的尺寸要求是(N, C, H ,W)
input = torch.ones((64, 3, 32, 32))
output = myModule(input)
print(output.shape)
# torch.Size([64, 10])
- train.py
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
# 标准是需要新建model.py,在其里面写网络模型的定义,并简单对网络进行测试
# 需要导入model.py文件,from model import *
# 创建网络模型
myModule = MyModule()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2
# 添加tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("__________第{}轮训练开始__________".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
# 清零上一梯度
optim.zero_grad()
# 反向传播,获取梯度
loss.backward()
# 优化器根据梯度优化参数
optim.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
# 测试步骤开始,不需要进行调优
total_test_loss = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
print("整体测试集上的Loss:{}".format(total_test_loss))
writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
total_test_step += 1
# 保存每一轮训练的结果
torch.save(myModule, "myModule_{}.pth".format(i+1))
print("第{}轮训练后的模型已保存".format(i+1))
writer.close()
- tensorboard显示
套路(二)
- 增加优化代码:添加测试数据集正确率
- 正确率的计算思路
argmax
函数将outputs由概率形式转化为preds最高概率的下标形式
import torch
outputs = torch.tensor([[0.1, 0.2],
[0.05, 0.4]])
print(outputs.argmax(1)) # tensor([1, 1])
print(outputs.argmax(0)) # tensor([0, 1])
- 上述正确率思路的代码实现
import torch
outputs = torch.tensor([[0.1, 0.2],
[0.3, 0.4]])
print(outputs.argmax(1)) # tensor([1, 1])
preds = outputs.argmax(1)
targets = torch.tensor([0, 1])
print(preds == targets) # tensor([False, True])
print((preds == targets).sum()) # tensor(1)
- 对上述完整套路(一)进行改进
# 添加整体测试集上的正确率total_test_accuray
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
# 标准是需要新建model.py,在其里面写网络模型的定义,并简单对网络进行测试
# 需要导入model.py文件,from model import *
# 创建网络模型
myModule = MyModule()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2
# 添加tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("__________第{}轮训练开始__________".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
# 清零上一梯度
optim.zero_grad()
# 反向传播,获取梯度
loss.backward()
# 优化器根据梯度优化参数
optim.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
# 测试步骤开始,不需要进行调优
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
# 保存每一轮训练的结果
torch.save(myModule, "myModule_{}.pth".format(i+1))
print("第{}轮训练后的模型已保存".format(i+1))
writer.close()
套路(三)
- 关注自己网络中是否有特殊的层,有的话必须调用以下两句代码,没有的话也可以调用,不会影响代码运行,建议添加上,保证完整性。
- 假设实例化后的网络为myModule
myModule.train()
, 进入训练状态myModule.eval()
, 进入验证状态- 查看官方文档说明,仅对网络中特殊的层起作用,比如Dropout,BatchNorm。
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.
- 对上述完整套路(二)进行改进
# 添加myModule.train() 和 myModule.eval()
# 针对网络中的特殊层起作用,比如Dropout,BatchNorm等
# 当不含这些层时,添加也不影响代码运行,建议添加,保证完整性。
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
# 标准是需要新建model.py,在其里面写网络模型的定义,并简单对网络进行测试
# 需要导入model.py文件,from model import *
# 创建网络模型
myModule = MyModule()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2
# 添加tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("__________第{}轮训练开始__________".format(i+1))
# 训练步骤开始
myModule.train()
for data in train_dataloader:
imgs, targets = data
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
# 清零上一梯度
optim.zero_grad()
# 反向传播,获取梯度
loss.backward()
# 优化器根据梯度优化参数
optim.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
# 测试步骤开始,不需要进行调优
myModule.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
# 保存每一轮训练的结果
torch.save(myModule, "myModule_{}.pth".format(i+1))
print("第{}轮训练后的模型已保存".format(i+1))
writer.close()
GPU训练
方式一
- 针对哪些部分进行GPU训练呢?
- 网络模型
- 数据(输入,标注)
- 损失函数
- 添加
.cuda()
- 代码
if(torch.cuda.is_available()):
myModule = myModule.cuda()
if(torch.cuda.is_available()):
loss_fn = loss_fn.cuda()
if (torch.cuda.is_available()):
imgs = imgs.cuda()
targets = targets.cuda()
- 针对完整套路(三)添加GPU后代码,及添加测试运行时间
# 网络模型
# 数据(输入, 标注)
# 损失函数
# .cuda()
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
import time
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# 创建网络模型
myModule = MyModule()
if(torch.cuda.is_available()):
myModule = myModule.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if(torch.cuda.is_available()):
loss_fn = loss_fn.cuda()
# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2
# 添加tensorboard
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
print("__________第{}轮训练开始__________".format(i+1))
# 训练步骤开始
myModule.train()
for data in train_dataloader:
imgs, targets = data
if (torch.cuda.is_available()):
imgs = imgs.cuda()
targets = targets.cuda()
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
# 清零上一梯度
optim.zero_grad()
# 反向传播,获取梯度
loss.backward()
# 优化器根据梯度优化参数
optim.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time - start_time)
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
# 测试步骤开始,不需要进行调优
myModule.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
if (torch.cuda.is_available()):
imgs = imgs.cuda()
targets = targets.cuda()
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
# 保存每一轮训练的结果
torch.save(myModule, "myModule_{}.pth".format(i+1))
print("第{}轮训练后的模型已保存".format(i+1))
writer.close()
- 如果电脑不带GPU,可以使用
Google Colab
这个平台训练代码。
方式(二)- 更常用
.to(device)
device = torch.device("cpu)
device = torch.device(“cuda”)
当电脑上有多张显卡时: 指定显卡
device = torch.device(“cuda:0”)
device = torch.device(“cuda:1”)
代码
# 网络模型
# 数据(输入, 标注)
# 损失函数
# .to(device)
# device = torch.device("cpu)
# device = torch.device("cuda")
# 当电脑上有多张显卡时: 指定显卡
# device = torch.device("cuda:0")
# device = torch.device("cuda:1")
import torch.optim
import torchvision
from torch.utils.tensorboard import SummaryWriter
import time
# 定义训练的设备
# device = torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 获取数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(train_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# 创建网络模型
myModule = MyModule()
myModule = myModule.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learnng_rate = 1e-2 # 1 x 10 ^ (-2) = 0.01
optim = torch.optim.SGD(myModule.parameters(), lr = learnng_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 2
# 添加tensorboard
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
print("__________第{}轮训练开始__________".format(i+1))
# 训练步骤开始
myModule.train()
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
# 清零上一梯度
optim.zero_grad()
# 反向传播,获取梯度
loss.backward()
# 优化器根据梯度优化参数
optim.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time - start_time)
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 添加item(),将tensor类型转化为纯数字
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 每轮训练完后,需要让网络在测试数据集上跑一遍,以测试数据集上的准确率来评估网络模型
# 测试步骤开始,不需要进行调优
myModule.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = myModule(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
writer.add_scalar("total_test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
# 保存每一轮训练的结果
torch.save(myModule, "myModule_{}.pth".format(i+1))
print("第{}轮训练后的模型已保存".format(i+1))
writer.close()
完整的模型验证(测试,demo)套路
- 即利用已经训练好的模型,然后给它提供输入
- 代码如下
import torch
import torchvision
from PIL import Image
from torch import nn
image_path = "image/img.png"
image = Image.open(image_path)
print(image) # PIL image
# png格式是四通道,除了RGB三通道外,还有一个透明度通道,所以我们需要调用convert('RGB')保留其颜色通道
# 如果图片本来就是三个颜色通道,经过此操作,不变。
# 加上这一步后,可以适应png jpg各种格式的图片。
image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape) # torch.Size([3, 32, 32])
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# 获取在Google Colab上训练好的CIFAR10网络模型myModule_gpu_30.pth文件
# GPU上的模型在CPU上运行,需要注释设备,device
model = torch.load("myModule_gpu_30.pth", map_location=torch.device('cpu'))
# print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
output = model(image)
print(output)
# tensor([[ 0.0420, -1.9627, 3.6137, 2.4646, 2.2315, 4.4008, -0.0148, -3.1938,
# -1.0747, -7.2118]], grad_fn=<AddmmBackward0>)
print(output.argmax(1)) # tensor([5]) 核对CIFAR10数据集的标签 ,是dog,测试准确
边栏推荐
猜你喜欢
上海控安技术成果入选市经信委《2021年上海市网络安全产业创新攻关成果目录》
工程制图知识点
js 图形操作一(兼容pc、移动端实现 draggable属性 拖放效果)
Example of Noise Calculation for Amplifier OPA855
Two-table query average grouping in sql server
链表中的数字相加----链表专题
基于 Kubernetes 的微服务项目整体设计与实现
Science bosses say | Hong Kong rhubarb KaiBin teacher take you unlock the relationship between the matrix and 6 g
周报2022-8-4
Undefined symbols for architecture arm64解决方案
随机推荐
链表中的数字相加----链表专题
请问如果想往mysql里面写数据,直接用flink-connector-jdbc就可以吧,可是我在f
使用 External Secrets Operator 安全管理 Kubernetes Secrets
Hbuilder 学习使用中的一些记录
动态库之间回调函数使用
使用稀疏 4D 卷积对 3D LiDAR 数据中的运动对象进行后退分割(IROS 2022)
Embedded practice ---- based on RT1170 transplant memtester to do SDRAM test (25)
放大器OPA855的噪声计算实例
周报2022-8-4
my journal link
营销建议 | 您有一份八月营销月历待查收! 建议收藏 !
轩辕实验室丨欧盟EVITA项目预研 第一章(四)
selectPage 动态改变参数方法
sql server收缩日志的作业和记录,失败就是因为和备份冲突了吗?
百行代码发射红心,程序员何愁命不中女朋友!
科普大佬说 | 港大黄凯斌老师带你解锁黑客帝国与6G的关系
2022-08-01 回顾基础二叉树以及操作
Code Audit - PHP
【零基础玩转BLDC系列】无刷直流电机无位置传感器三段式启动法详细介绍及代码分享
程序员的七种武器