当前位置:网站首页>自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM
自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM
2022-08-01 00:00:00 【人工智能曾小健】
from IPython.display import clear_output
!pip3 install pycaret --user
clear_output()!pip install numpy==1.20.0
import numpy as np
import pandas as pd
import random
import os
from pycaret.classification import *TRAIN_PATH = "../input/titanic/train.csv"
TEST_PATH = "../input/titanic/test.csv"
SAMPLE_SUBMISSION_PATH = "../input/titanic/gender_submission.csv"
SUBMISSION_PATH = "submission.csv"
ID = "PassengerId"
TARGET = "Survived"
SEED = 2022
def seed_everything(seed: int = SEED):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
seed_everything()
import pandas as pd
train = pd.read_csv(TRAIN_PATH)
test = pd.read_csv(TEST_PATH)
test
setup(
data=train,
target=TARGET,
silent=True
)
({'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7f2b6faa2950>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7f2b6faa2ad0>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7f2b6faa2790>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7f2b6faa27d0>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7f2b6faac990>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7f2b6faac6d0>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7f2b6faac910>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7f2b6faac510>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7f2b6fb3f750>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7f2b6faa26d0>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7f2b6fb3f2d0>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7f2b6fb3f210>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7f2b6fb3ce10>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7f2b6faac610>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7f2b6fb3c910>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7f2b6fb3ca10>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7f2b6fb3c250>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7f2b6fb3c1d0>,
'dummy': <pycaret.containers.models.classification.DummyClassifierContainer at 0x7f2b6facd490>},
True,
150 0
547 1
125 1
779 1
183 1
..
370 1
317 0
351 0
339 0
289 1
Name: Survived, Length: 623, dtype: int64,
10,
8860,
'88e1',
Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False),
False,
Age Fare Pclass_1 Pclass_2 Pclass_3 \
0 22.000000 7.250000 0.0 0.0 1.0
1 38.000000 71.283302 1.0 0.0 0.0
2 26.000000 7.925000 0.0 0.0 1.0
3 35.000000 53.099998 1.0 0.0 0.0
4 35.000000 8.050000 0.0 0.0 1.0
.. ... ... ... ... ...
886 27.000000 13.000000 0.0 1.0 0.0
887 19.000000 30.000000 1.0 0.0 0.0
888 29.466112 23.450001 0.0 0.0 1.0
889 26.000000 30.000000 1.0 0.0 0.0
890 32.000000 7.750000 0.0 0.0 1.0
Name_Aks Mrs. Sam (Leah Rosen) Name_Albimona Mr. Nassef Cassem \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0
Name_Ali Mr. Ahmed Name_Allen Mr. William Henry \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 1.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0 model = create_model('lightgbm')
tuneModel = tune_model(model,optimize = 'AUC') 
plot_model(tuneModel) 
plot_model(tuneModel, plot='feature') 
边栏推荐
- 【ACM】2022.7.31训练赛
- Shell常用脚本:Nexus批量上传本地仓库增强版脚本(强烈推荐)
- 浏览器下载快捷方式到桌面(PWA)
- 虹科分享|如何用移动目标防御技术防范未知因素
- 消息队列消息存储设计(架构实战营 模块八作业)
- SQL injection Less42 (POST type stack injection)
- 开源好用的 流程图绘制工具 drawio
- Pylint检查规则中文版
- Recommendation system: Summary of common evaluation indicators [accuracy rate, precision rate, recall rate, hit rate, (normalized depreciation cumulative gain) NDCG, mean reciprocal ranking (MRR), ROC
- 【FPGA教程案例43】图像案例3——通过verilog实现图像sobel边缘提取,通过MATLAB进行辅助验证
猜你喜欢

什么是客户画像管理?

VOT2021 game introduction

《ArchSummit:时代的呐喊,技术人听得到》

Recommendation system: Summary of common evaluation indicators [accuracy rate, precision rate, recall rate, hit rate, (normalized depreciation cumulative gain) NDCG, mean reciprocal ranking (MRR), ROC

网易云信圈组上线实时互动频道,「破冰」弱关系社交

NIO编程

IJCAI2022 | 代数和逻辑约束的混合概率推理

浏览器下载快捷方式到桌面(PWA)

【1161. 最大层内元素和】

【Acwing】The 62nd Weekly Game Solution
随机推荐
IJCAI2022 | 代数和逻辑约束的混合概率推理
Drawing process of hand-drawn map of scenic spots
Carefully organize 16 MySQL usage specifications to reduce problems by 80% and recommend sharing with the team
南方科技大学:Xiaoying Tang | AADG:视网膜图像分割领域泛化的自动增强
[Cloud Residency Co-Creation] [HCSD Big Celebrity Live Broadcast] Personally teach the secrets of interviews in big factories
(26) About menu of the top menu of Blender source code analysis
date命令
【FPGA教程案例43】图像案例3——通过verilog实现图像sobel边缘提取,通过MATLAB进行辅助验证
EntityFramework保存到SQLServer 小数精度丢失
When can I use PushGateway
内核对设备树的处理
如何撰写出一篇优质的数码类好物推荐文
输入输出优化
SQL注入 Less42(POST型堆叠注入)
TypeScript 的组件
Google Earth Engine——Error: Image.clipToBoundsAndScale, argument ‘input‘: Invalid type的错误解决
[QNX Hypervisor 2.2用户手册]9.16 system
SQL injection Less42 (POST type stack injection)
简单的vim配置
NgRx 里 first 和 take(1) 操作符的区别