当前位置:网站首页>自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM
自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM
2022-08-01 00:00:00 【人工智能曾小健】
from IPython.display import clear_output
!pip3 install pycaret --user
clear_output()!pip install numpy==1.20.0
import numpy as np
import pandas as pd
import random
import os
from pycaret.classification import *TRAIN_PATH = "../input/titanic/train.csv"
TEST_PATH = "../input/titanic/test.csv"
SAMPLE_SUBMISSION_PATH = "../input/titanic/gender_submission.csv"
SUBMISSION_PATH = "submission.csv"
ID = "PassengerId"
TARGET = "Survived"
SEED = 2022
def seed_everything(seed: int = SEED):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
seed_everything()
import pandas as pd
train = pd.read_csv(TRAIN_PATH)
test = pd.read_csv(TEST_PATH)
test
setup(
data=train,
target=TARGET,
silent=True
)
({'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7f2b6faa2950>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7f2b6faa2ad0>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7f2b6faa2790>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7f2b6faa27d0>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7f2b6faac990>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7f2b6faac6d0>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7f2b6faac910>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7f2b6faac510>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7f2b6fb3f750>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7f2b6faa26d0>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7f2b6fb3f2d0>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7f2b6fb3f210>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7f2b6fb3ce10>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7f2b6faac610>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7f2b6fb3c910>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7f2b6fb3ca10>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7f2b6fb3c250>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7f2b6fb3c1d0>,
'dummy': <pycaret.containers.models.classification.DummyClassifierContainer at 0x7f2b6facd490>},
True,
150 0
547 1
125 1
779 1
183 1
..
370 1
317 0
351 0
339 0
289 1
Name: Survived, Length: 623, dtype: int64,
10,
8860,
'88e1',
Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False),
False,
Age Fare Pclass_1 Pclass_2 Pclass_3 \
0 22.000000 7.250000 0.0 0.0 1.0
1 38.000000 71.283302 1.0 0.0 0.0
2 26.000000 7.925000 0.0 0.0 1.0
3 35.000000 53.099998 1.0 0.0 0.0
4 35.000000 8.050000 0.0 0.0 1.0
.. ... ... ... ... ...
886 27.000000 13.000000 0.0 1.0 0.0
887 19.000000 30.000000 1.0 0.0 0.0
888 29.466112 23.450001 0.0 0.0 1.0
889 26.000000 30.000000 1.0 0.0 0.0
890 32.000000 7.750000 0.0 0.0 1.0
Name_Aks Mrs. Sam (Leah Rosen) Name_Albimona Mr. Nassef Cassem \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0
Name_Ali Mr. Ahmed Name_Allen Mr. William Henry \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 1.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0 model = create_model('lightgbm')
tuneModel = tune_model(model,optimize = 'AUC') 
plot_model(tuneModel) 
plot_model(tuneModel, plot='feature') 
边栏推荐
- (26)Blender源码分析之顶层菜单的关于菜单
- SQL injection Less47 (error injection) and Less49 (time blind injection)
- (26) About menu of the top menu of Blender source code analysis
- How to import a Golang external package and use it?
- 2022-07-31:给出一个有n个点,m条有向边的图, 你可以施展魔法,把有向边,变成无向边, 比如A到B的有向边,权重为7。施展魔法之后,A和B通过该边到达彼此的代价都是7。 求,允许施展一次魔法
- 推荐系统:常用评价指标总结【准确率、精确率、召回率、命中率、(归一化折损累计增益)NDCG、平均倒数排名(MRR)、ROC曲线、AUC(ROC曲线下的面积)、P-R曲线、A/B测试】
- SVN server construction + SVN client + TeamCity integrated environment construction + VS2019 development
- SQL injection Less42 (POST type stack injection)
- [Reading Notes -> Data Analysis] 02 Data Analysis Preparation
- 开源好用的 流程图绘制工具 drawio
猜你喜欢
随机推荐
高等代数_证明_任何矩阵都相似于一个上三角矩阵
UOS统信系统 - WindTerm使用
VOT2021 game introduction
[Reading Notes -> Data Analysis] 02 Data Analysis Preparation
C# Rectangle基本用法和图片切割
Difference Between Stateless and Stateful
什么是动态规划,什么是背包问题
How to import a Golang external package and use it?
助力数字政府建设,中科三方构建域名安全保障体系
cobaltstrike
Recommendation system: Summary of common evaluation indicators [accuracy rate, precision rate, recall rate, hit rate, (normalized depreciation cumulative gain) NDCG, mean reciprocal ranking (MRR), ROC
一文带你了解 Grafana 最新开源项目 Mimir 的前世今生
Pylint检查规则中文版
推荐系统:常用评价指标总结【准确率、精确率、召回率、命中率、(归一化折损累计增益)NDCG、平均倒数排名(MRR)、ROC曲线、AUC(ROC曲线下的面积)、P-R曲线、A/B测试】
Flutter教程之 01配置环境并运行demo程序 (教程含源码)
EntityFramework保存到SQLServer 小数精度丢失
内核对设备树的处理
Program processes and threads (concurrency and parallelism of threads) and basic creation and use of threads
基于mysql的消息队列设计
清华大学陈建宇教授团队 | 基于接触丰富机器人操作的接触安全强化学习框架








