当前位置:网站首页>[combinatorics] generating function (shift property)
[combinatorics] generating function (shift property)
2022-07-03 17:46:00 【Programmer community】
List of articles
- One 、 Shift property of generating function 1 ( To shift backward )
- Two 、 Shift property of generating function 2 ( Forward shift )
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
One 、 Shift property of generating function 1 ( To shift backward )
Shift property of generating function 1 ( To shift backward ) :
b
(
n
)
=
{
0
,
n
<
l
a
n
−
l
,
n
≥
l
b(n) = \begin{cases} 0, & n < l \\\\ a_{n-l}, & n \geq l \end{cases}
b(n)=⎩⎪⎨⎪⎧0,an−l,n<ln≥l , be
B
(
x
)
=
x
l
A
(
x
)
B(x) = x^l A(x)
B(x)=xlA(x)
from Known sequence
a
n
a_n
an Of Generating function
A
(
x
)
A(x)
A(x) , seek Another series
b
n
b_n
bn Of Generating function
B
(
x
)
B(x)
B(x) ;
Known sequence
a
n
=
{
a
0
,
a
1
,
⋯
,
a
n
,
⋯
}
a_n = \{a_0, a_1 , \cdots , a_n , \cdots\}
an={ a0,a1,⋯,an,⋯} , The generating function is
A
(
x
)
A(x)
A(x) ;
The sequence
b
n
b_n
bn And
a
n
a_n
an The relationship is ,
b
n
b_n
bn stay
a
n
a_n
an Added in front of
l
l
l individual
0
0
0 ;
The sequence
a
n
a_n
an :
a
0
,
a
1
,
⋯
,
a
n
,
⋯
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_0, a_1 , \cdots , a_n , \cdots
a0,a1,⋯,an,⋯
The sequence
b
n
b_n
bn :
0
,
0
,
⋯
,
0
⏟
l
individual
0
,
\begin{matrix} \underbrace{ 0, 0, \cdots , 0 } \\ l individual 0 \end{matrix} ,
0,0,⋯,0l individual 0,
a
0
,
a
1
,
⋯
,
a
n
,
⋯
a_0, a_1 , \cdots , a_n , \cdots
a0,a1,⋯,an,⋯
The sequence
b
n
b_n
bn The generating function of , front
l
l
l The coefficients of the terms are
0
0
0 , So you can omit ,
- The first
l
l
B
(
x
)
B(x)
B(x) The generating function item of is
a
0
x
l
a_0x^l
a0xl , Corresponding
A
(
x
)
A(x)
A(x) The generating function item in is
a
0
a_0
a0
l term ,
- The first
l
+
1
l+1
B
(
x
)
B(x)
B(x) The generating function item of is
a
1
x
l
+
1
a_1x^{l+1}
a1xl+1 , Corresponding
A
(
x
)
A(x)
A(x) The generating function item in is
a
1
x
a_1x
a1x
l+1 term ,
B
(
x
)
B(x)
B(x) Generating function Each of them is just The sequence
a
n
a_n
an Of Generating function
A
(
x
)
A(x)
A(x) Each On the basis of , multiply
x
l
x^l
xl that will do ;
Two 、 Shift property of generating function 2 ( Forward shift )
Shift property of generating function 2 ( Forward shift ) :
b
n
=
a
n
+
1
b_n = a_{n+1}
bn=an+1 , be
B
(
x
)
=
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
x
l
B(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}
B(x)=xlA(x)−n=0∑l−1anxn
from Known sequence
a
n
a_n
an Of Generating function
A
(
x
)
A(x)
A(x) , seek Another series
b
n
b_n
bn Of Generating function
B
(
x
)
B(x)
B(x) ;
Known sequence
a
n
=
{
a
0
,
a
1
,
⋯
,
a
n
,
⋯
}
a_n = \{a_0, a_1 , \cdots , a_n , \cdots\}
an={ a0,a1,⋯,an,⋯} , The generating function is
A
(
x
)
A(x)
A(x) ;
The sequence
b
n
b_n
bn And
a
n
a_n
an The relationship is ,
b
n
b_n
bn stay
a
n
a_n
an It moves backwards on the basis of
l
l
l position ,
b
0
b_0
b0 And
a
l
a_l
al Same value ,
b
1
b_1
b1 And
a
l
+
1
a_{l+1}
al+1 Same value ;
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,
The sequence
a
n
a_n
an :
a
0
,
a
1
,
⋯
,
a
l
,
a
l
+
1
⋯
a_0, a_1 , \cdots , a_l , a_{l+1} \cdots
a0,a1,⋯,al,al+1⋯
The sequence
b
n
b_n
bn :
b
0
,
b
1
,
⋯
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b_0 , b_1 , \cdots
b0,b1,⋯
according to
A
(
x
)
A(x)
A(x) seek
B
(
x
)
B(x)
B(x) :
stay
A
(
x
)
A(x)
A(x) On the basis of , Before subtraction
l
l
l term , namely from
0
0
0 To
l
−
1
l-1
l−1 term ,
a
0
,
a
1
x
,
a
2
x
2
,
⋯
a
l
−
1
x
l
−
1
a_0 , a_1x , a_2x^2 , \cdots a_{l-1}x^{l-1}
a0,a1x,a2x2,⋯al−1xl−1 , So there is
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
A(x) - \sum\limits_{n=0}^{l-1} a_nx^n
A(x)−n=0∑l−1anxn ;
A
(
x
)
A(x)
A(x) Generating function Of Remaining items , Each item is better than
B
(
x
)
B(x)
B(x) many
x
l
x^l
xl times , Divide
x
l
x^l
xl that will do ;
In the above
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
A(x) - \sum\limits_{n=0}^{l-1} a_nx^n
A(x)−n=0∑l−1anxn On the basis of , Divide
x
l
x^l
xl , obtain
B
(
x
)
=
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
x
l
B(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}
B(x)=xlA(x)−n=0∑l−1anxn ;
边栏推荐
- Stm32h7 Hal library SPI DMA transmission has been in busy solution
- List of financial products in 2022
- [combinatorics] generating function (linear property | product property)
- Research on Swift
- STM32实现74HC595控制
- Test your trained model
- 国内如何购买Google Colab会员
- MySQL grouping query
- vs2013已阻止安装程序,需安装IE10
- WEB-UI自动化测试-最全元素定位方法
猜你喜欢
![[UE4] brush Arctic pack high quality Arctic terrain pack](/img/e7/bc86bd8450b0b2bdec8980a2aa1a10.jpg)
[UE4] brush Arctic pack high quality Arctic terrain pack

问题随记 —— 在 edge 上看视频会绿屏

Research Report on investment trends and development planning of China's thermal insulation material industry, 2022-2028

Research on Swift

TCP拥塞控制详解 | 3. 设计空间

The third day of writing C language by Yabo people

Leetcode 108 converts an ordered array into a binary search tree -- recursive method

Notes on problems -- watching videos on edge will make the screen green

聊聊支付流程的设计与实现逻辑

聊聊支付流程的設計與實現邏輯
随机推荐
Leetcode 538 converts binary search tree into cumulative tree -- recursive method and iterative method
【RT-Thread】nxp rt10xx 设备驱动框架之--Pin搭建和使用
Collection of the most beautiful graduation photos in the graduation season, collection of excellent graduation photos
一入“远程”终不悔,几人欢喜几人愁。| 社区征文
MySQL grouping query
Enterprise custom form engine solution (XI) -- form rule engine 1
PR second time
Basic grammar of interview (Part 2)
Y is always discrete and can't understand, how to solve it? Answer: read it several times
PS screen printing brush 131, many illustrators have followed suit
AcWing 3438. Number system conversion
Vs2013 has blocked the installer, and ie10 needs to be installed
[mathematical logic] equivalent calculus and reasoning calculus of predicate logic (individual word | predicate | quantifier | predicate logic formula | two basic formulas | proposition symbolization
企业级自定义表单引擎解决方案(十一)--表单规则引擎1
[combinatorics] recursive equation (special solution example 1 Hannover tower complete solution process | special solution example 2 special solution processing when the characteristic root is 1)
Cloud primordial weekly | CNCF released the 2021 cloud primordial development status report, which was released on istio 1.13
小程序 多tab 多swiper + 每个tab分页
PUT vs. POST for Uploading Files - RESTful API to be Built Using Zend Framework
Leetcode Valentine's Day Special - looking for a single dog
MinGW compile boost library