当前位置:网站首页>[combinatorics] generating function (shift property)
[combinatorics] generating function (shift property)
2022-07-03 17:46:00 【Programmer community】
List of articles
- One 、 Shift property of generating function 1 ( To shift backward )
- Two 、 Shift property of generating function 2 ( Forward shift )
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
One 、 Shift property of generating function 1 ( To shift backward )
Shift property of generating function 1 ( To shift backward ) :
b
(
n
)
=
{
0
,
n
<
l
a
n
−
l
,
n
≥
l
b(n) = \begin{cases} 0, & n < l \\\\ a_{n-l}, & n \geq l \end{cases}
b(n)=⎩⎪⎨⎪⎧0,an−l,n<ln≥l , be
B
(
x
)
=
x
l
A
(
x
)
B(x) = x^l A(x)
B(x)=xlA(x)
from Known sequence
a
n
a_n
an Of Generating function
A
(
x
)
A(x)
A(x) , seek Another series
b
n
b_n
bn Of Generating function
B
(
x
)
B(x)
B(x) ;
Known sequence
a
n
=
{
a
0
,
a
1
,
⋯
,
a
n
,
⋯
}
a_n = \{a_0, a_1 , \cdots , a_n , \cdots\}
an={ a0,a1,⋯,an,⋯} , The generating function is
A
(
x
)
A(x)
A(x) ;
The sequence
b
n
b_n
bn And
a
n
a_n
an The relationship is ,
b
n
b_n
bn stay
a
n
a_n
an Added in front of
l
l
l individual
0
0
0 ;
The sequence
a
n
a_n
an :
a
0
,
a
1
,
⋯
,
a
n
,
⋯
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_0, a_1 , \cdots , a_n , \cdots
a0,a1,⋯,an,⋯
The sequence
b
n
b_n
bn :
0
,
0
,
⋯
,
0
⏟
l
individual
0
,
\begin{matrix} \underbrace{ 0, 0, \cdots , 0 } \\ l individual 0 \end{matrix} ,
0,0,⋯,0l individual 0,
a
0
,
a
1
,
⋯
,
a
n
,
⋯
a_0, a_1 , \cdots , a_n , \cdots
a0,a1,⋯,an,⋯
The sequence
b
n
b_n
bn The generating function of , front
l
l
l The coefficients of the terms are
0
0
0 , So you can omit ,
- The first
l
l
B
(
x
)
B(x)
B(x) The generating function item of is
a
0
x
l
a_0x^l
a0xl , Corresponding
A
(
x
)
A(x)
A(x) The generating function item in is
a
0
a_0
a0
l term ,
- The first
l
+
1
l+1
B
(
x
)
B(x)
B(x) The generating function item of is
a
1
x
l
+
1
a_1x^{l+1}
a1xl+1 , Corresponding
A
(
x
)
A(x)
A(x) The generating function item in is
a
1
x
a_1x
a1x
l+1 term ,
B
(
x
)
B(x)
B(x) Generating function Each of them is just The sequence
a
n
a_n
an Of Generating function
A
(
x
)
A(x)
A(x) Each On the basis of , multiply
x
l
x^l
xl that will do ;
Two 、 Shift property of generating function 2 ( Forward shift )
Shift property of generating function 2 ( Forward shift ) :
b
n
=
a
n
+
1
b_n = a_{n+1}
bn=an+1 , be
B
(
x
)
=
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
x
l
B(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}
B(x)=xlA(x)−n=0∑l−1anxn
from Known sequence
a
n
a_n
an Of Generating function
A
(
x
)
A(x)
A(x) , seek Another series
b
n
b_n
bn Of Generating function
B
(
x
)
B(x)
B(x) ;
Known sequence
a
n
=
{
a
0
,
a
1
,
⋯
,
a
n
,
⋯
}
a_n = \{a_0, a_1 , \cdots , a_n , \cdots\}
an={ a0,a1,⋯,an,⋯} , The generating function is
A
(
x
)
A(x)
A(x) ;
The sequence
b
n
b_n
bn And
a
n
a_n
an The relationship is ,
b
n
b_n
bn stay
a
n
a_n
an It moves backwards on the basis of
l
l
l position ,
b
0
b_0
b0 And
a
l
a_l
al Same value ,
b
1
b_1
b1 And
a
l
+
1
a_{l+1}
al+1 Same value ;
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,
The sequence
a
n
a_n
an :
a
0
,
a
1
,
⋯
,
a
l
,
a
l
+
1
⋯
a_0, a_1 , \cdots , a_l , a_{l+1} \cdots
a0,a1,⋯,al,al+1⋯
The sequence
b
n
b_n
bn :
b
0
,
b
1
,
⋯
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b_0 , b_1 , \cdots
b0,b1,⋯
according to
A
(
x
)
A(x)
A(x) seek
B
(
x
)
B(x)
B(x) :
stay
A
(
x
)
A(x)
A(x) On the basis of , Before subtraction
l
l
l term , namely from
0
0
0 To
l
−
1
l-1
l−1 term ,
a
0
,
a
1
x
,
a
2
x
2
,
⋯
a
l
−
1
x
l
−
1
a_0 , a_1x , a_2x^2 , \cdots a_{l-1}x^{l-1}
a0,a1x,a2x2,⋯al−1xl−1 , So there is
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
A(x) - \sum\limits_{n=0}^{l-1} a_nx^n
A(x)−n=0∑l−1anxn ;
A
(
x
)
A(x)
A(x) Generating function Of Remaining items , Each item is better than
B
(
x
)
B(x)
B(x) many
x
l
x^l
xl times , Divide
x
l
x^l
xl that will do ;
In the above
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
A(x) - \sum\limits_{n=0}^{l-1} a_nx^n
A(x)−n=0∑l−1anxn On the basis of , Divide
x
l
x^l
xl , obtain
B
(
x
)
=
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
x
l
B(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}
B(x)=xlA(x)−n=0∑l−1anxn ;
边栏推荐
- Leetcode540: a single element in an ordered array
- Automata and automatic line of non-standard design
- Interviewer: why is the value nil not equal to nil?
- 【JokerのZYNQ7020】DDS_ Compiler。
- 【RT-Thread】nxp rt10xx 设备驱动框架之--Audio搭建和使用
- 远程办公工具分享|社区征文
- 1164 Good in C
- Draw some simple graphics with MFC
- [combinatorics] recursive equation (special solution example 1 Hannover tower complete solution process | special solution example 2 special solution processing when the characteristic root is 1)
- 面试官:值为 nil 为什么不等于 nil ?
猜你喜欢

1146_ SiCp learning notes_ exponentiation

Kubernetes resource object introduction and common commands (V) - (NFS & PV & PVC)
![Luogu: p1155 [noip2008 improvement group] double stack sorting (bipartite graph, simulation)](/img/be/4ef38f711e7319a2cc83db2bee3a07.jpg)
Luogu: p1155 [noip2008 improvement group] double stack sorting (bipartite graph, simulation)

Global and Chinese pediatric palliative care drug market development research and investment planning recommendations report 2022-2028

STM32实现74HC595控制

国内如何购买Google Colab会员

Getting started with deops

Implementation of Tetris in C language

Kubernetes resource object introduction and common commands (III)

【RT-Thread】nxp rt10xx 设备驱动框架之--Pin搭建和使用
随机推荐
Assembly for unloading Loadfrom() loaded assembly - unloading the assembly loaded with assembly LoadFrom()
Select 3 fcpx plug-ins. Come and see if you like them
Tensorboard quick start (pytoch uses tensorboard)
How to train mask r-cnn model with your own data
【RT-Thread】nxp rt10xx 设备驱动框架之--rtc搭建和使用
Electronic Science and technology 20th autumn "Microcomputer Principle and application" online assignment 2 [standard answer]
STM32H7 HAL库SPI DMA发送一直处于busy的解决办法
AcWing 3438. 数制转换
自动渗透测试工具核心功能简述
Cloud primordial weekly | CNCF released the 2021 cloud primordial development status report, which was released on istio 1.13
Kubernetes resource object introduction and common commands (4)
Research Report on market demand and investment planning for the development of China's office chair industry, 2022-2028
How to install PHP on Ubuntu 20.04
Stm32h7 Hal library SPI DMA transmission has been in busy solution
POM in idea XML graying solution
基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
QT adjust win screen brightness and sound size
link preload prefetch
PHP returns 500 errors but no error log - PHP return 500 error but no error log
vs2013已阻止安装程序,需安装IE10