当前位置:网站首页>Hidden Markov model (HMM): model parameter estimation
Hidden Markov model (HMM): model parameter estimation
2022-07-01 16:53:00 【HadesZ~】
It is estimated that HMM Model parameters , According to whether the observation sequence corresponds to the state sequence , It can be divided into supervised learning algorithm and unsupervised learning algorithm .
1. Supervised learning estimation HMM Model parameters
Suppose the given training data contains n n n Observation sequence and corresponding state sequence ( The length of different observation sequences can be the same , It can be different ) { ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , ⋯ , ( X n , Y n ) } \{(X_1, Y_1), (X_2, Y_2), \cdots, (X_n, Y_n)\} { (X1,Y1),(X2,Y2),⋯,(Xn,Yn)}, When the state and hang test sequence are known , The model parameter values on each sample can be obtained by direct statistics according to the definition of model parameters , Then the estimation of model parameters can be obtained by calculating the expectation on all samples of the whole training data set .
1.1 Transfer probability a i j a_{ij} aij Estimation
Set the first k k k Among samples , t t t Always in the State s i s_i si、 t + 1 t+1 t+1 Always in the State s j s_j sj The frequency of is A i j A_{ij} Aij, So the state transition probability a i j a_{ij} aij My estimate is :
a ^ i j = ∑ k = 1 n A i j ∑ k = 1 n ∑ j = 1 N A i j , i = 1 , 2 , ⋯ , N ; j = 1 , 2 , ⋯ , N (1.1) \hat{a}_{ij} = \frac{ \sum_{k=1}^{n} A_{ij} }{ \sum_{k=1}^{n} \sum_{j=1}^{N} A_{ij} }, \ \ \ \ \ \ i = 1, 2, \cdots, N; \ \ \ \ j = 1, 2, \cdots, N \tag{1.1} a^ij=∑k=1n∑j=1NAij∑k=1nAij, i=1,2,⋯,N; j=1,2,⋯,N(1.1)
1.2 Observed probability of occurrence b j ( v l ) b_j(v_l) bj(vl) Estimation
Set the first k k k Among samples , Status as s j s_j sj And the observation is o l o_l ol The frequency of this is B j l B_{jl} Bjl, Then the observed probability of occurrence b j ( v l ) b_j(v_l) bj(vl) My estimate is :
b ^ j ( o l ) = ∑ k = 1 n B j l ∑ k = 1 n ∑ l = 1 M B j l , i = 1 , 2 , ⋯ , N ; l = 1 , 2 , ⋯ , M (1.2) \hat{b}_{j}(o_l) = \frac{ \sum_{k=1}^{n} B_{jl} }{ \sum_{k=1}^{n} \sum_{l=1}^{M} B_{jl} }, \ \ \ \ \ \ i = 1, 2, \cdots, N; \ \ \ \ l = 1, 2, \cdots, M \tag{1.2} b^j(ol)=∑k=1n∑l=1MBjl∑k=1nBjl, i=1,2,⋯,N; l=1,2,⋯,M(1.2)
1.3 Initial state probability π i \pi_i πi Estimation
Initial state probability π i \pi_i πi My estimate is n n n Among samples , The frequency of the corresponding state :
π ^ i = 1 n ∑ k = 1 n i f ( y 1 = s i , 1 , 0 ) , i = 1 , 2 , ⋯ , N (1.3) \hat{\pi}_i = \frac{1}{n}\sum_{k=1}^{n}\ if(y_1 = s_i, \ 1, \ 0), \ \ \ \ \ \ i = 1, 2, \cdots, N \tag{1.3} π^i=n1k=1∑n if(y1=si, 1, 0), i=1,2,⋯,N(1.3)
2. Unsupervised learning estimation HMM Model parameters
Because the cost of status tagging is high , So only the observation sequence data is given 、 Request estimate HMM Model parameters are more common . Assume that the training data only contains a length of T T T The sequence of observations X X X And there's no corresponding state sequence Y Y Y, The goal is to estimate the parameters of hidden Markov model λ = ( A , B , π ) \lambda = (A, B, \pi) λ=(A,B,π). In this case , Sequence of States Y Y Y Is an unobservable hidden variable (hidden variable),HHM The model is a probability model with hidden variables :
P ( X ∣ λ ) = ∑ Y P ( X , Y ∣ λ ) = ∑ Y P ( X ∣ Y , λ ) P ( Y ∣ λ ) (2.1) P(X | \lambda)= \sum_{Y}P(X, Y | \lambda) = \sum_{Y}P(X | Y, \lambda)P(Y | \lambda) \tag{2.1} P(X∣λ)=Y∑P(X,Y∣λ)=Y∑P(X∣Y,λ)P(Y∣λ)(2.1) according to EM Algorithm ,HHM The maximum likelihood estimation of model parameters is 1:
λ ^ = arg max λ Q ( λ , λ ˉ ) (2.2) \hat{\lambda} = \argmax_{\lambda} Q(\lambda, \bar{\lambda}) \tag{2.2} λ^=λargmaxQ(λ,λˉ)(2.2) Q ( λ , λ ˉ ) = ∑ Y P ( X , Y ∣ λ ˉ ) ⋅ l o g P ( X , Y ∣ λ ) (2.3) Q(\lambda, \bar{\lambda}) = \sum_{Y} P(X, Y | \bar{\lambda}) \cdot logP(X, Y | \lambda) \tag{2.3} Q(λ,λˉ)=Y∑P(X,Y∣λˉ)⋅logP(X,Y∣λ)(2.3)
according to Q Q Q Function definition , type ( 2.3 ) type (2.3) type (2.3) Omitted λ \lambda λ The constant factor of 1 / P ( X ∣ λ ) 1/P(X | \lambda) 1/P(X∣λ).
Because by definition ,HMM In the model
P ( X , Y ∣ λ ) = π i 1 b i 1 ( x 1 ) ⋅ a i 1 i 2 b i 2 ( x 2 ) ⋯ a i T − 1 i T b i T ( x T ) P(X, Y | \lambda) = \pi_{i_1}b_{i_1}(x_1) \cdot a_{i_1i_2}b_{i_2}(x_2) \cdots a_{i_{T-1}i_T}b_{i_T}(x_T) P(X,Y∣λ)=πi1bi1(x1)⋅ai1i2bi2(x2)⋯aiT−1iTbiT(xT)
So the algorithm based on logarithm , The subitems involved in each parameter of the model in parameter estimation can be disassembled and collected , type ( 2.3 ) type (2.3) type (2.3) It can be rewritten as follows :
Q ( λ , λ ˉ ) = ∑ Y l o g ( π i 1 ) ⋅ P ( X , Y ∣ λ ˉ ) + ∑ Y [ ∑ t = 1 T − 1 l o g ( a i t i t + 1 ) ] ⋅ P ( X , Y ∣ λ ˉ ) + ∑ Y [ ∑ t = 1 T l o g ( b i t ( x t ) ) ] ⋅ P ( X , Y ∣ λ ˉ ) Q(\lambda, \bar{\lambda}) = \sum_{Y} log(\pi_{i_1}) \cdot P(X, Y | \bar{\lambda}) + \sum_{Y} [\sum_{t=1}^{T-1} log(a_{i_ti_{t+1}})] \cdot P(X, Y | \bar{\lambda}) + \sum_{Y} [\sum_{t=1}^{T} log(b_{i_t}(x_t)) ] \cdot P(X, Y | \bar{\lambda}) Q(λ,λˉ)=Y∑log(πi1)⋅P(X,Y∣λˉ)+Y∑[t=1∑T−1log(aitit+1)]⋅P(X,Y∣λˉ)+Y∑[t=1∑Tlog(bit(xt))]⋅P(X,Y∣λˉ)
therefore , Find the model parameters λ \lambda λ Maximum likelihood estimation of , It can be converted to separate calculation Maximum likelihood estimation of each parameter of the model :
π ^ i = arg max π i ∑ Y l o g ( π i 1 ) ⋅ P ( X , Y ∣ λ ˉ ) (2.4) \hat{\pi}_i = \argmax_{\pi_i} \sum_{Y} log(\pi_{i_1}) \cdot P(X, Y | \bar{\lambda}) \tag{2.4} π^i=πiargmaxY∑log(πi1)⋅P(X,Y∣λˉ)(2.4) a ^ i j = arg max π i ∑ Y [ ∑ t = 1 T − 1 l o g ( a i t i t + 1 ) ] ⋅ P ( X , Y ∣ λ ˉ ) (2.5) \hat{a}_{ij} = \argmax_{\pi_i} \sum_{Y} [\sum_{t=1}^{T-1} log(a_{i_ti_{t+1}})] \cdot P(X, Y | \bar{\lambda}) \tag{2.5} a^ij=πiargmaxY∑[t=1∑T−1log(aitit+1)]⋅P(X,Y∣λˉ)(2.5) b ^ j ( k ) = arg max π i ∑ Y [ ∑ t = 1 T l o g ( b i t ( x t ) ) ] ⋅ P ( X , Y ∣ λ ˉ ) (2.6) \hat{b}_j(k) = \argmax_{\pi_i} \sum_{Y} [\sum_{t=1}^{T} log(b_{i_t}(x_t)) ] \cdot P(X, Y | \bar{\lambda}) \tag{2.6} b^j(k)=πiargmaxY∑[t=1∑Tlog(bit(xt))]⋅P(X,Y∣λˉ)(2.6)
2.1 Initial state probability π i \pi_i πi Estimation
π ^ i = arg max π i ∑ Y l o g ( π i 1 ) ⋅ P ( X , Y ∣ λ ˉ ) (2.4) \hat{\pi}_i = \argmax_{\pi_i} \sum_{Y} log(\pi_{i_1}) \cdot P(X, Y | \bar{\lambda}) \tag{2.4} π^i=πiargmaxY∑log(πi1)⋅P(X,Y∣λˉ)(2.4) π ^ i = arg max π i ∑ i = 1 N l o g ( π i ) ⋅ P ( X , y 1 = s i ∣ λ ˉ ) (2.1.1) \hat{\pi}_i = \argmax_{\pi_i} \sum_{i=1}^{N} log(\pi_{i}) \cdot P(X, y1=s_i | \bar{\lambda}) \tag{2.1.1} π^i=πiargmaxi=1∑Nlog(πi)⋅P(X,y1=si∣λˉ)(2.1.1)
be aware π i \pi_i πi Meet the constraints ∑ i = 1 N π i = 1 \sum_{i=1}^{N} \pi_i = 1 ∑i=1Nπi=1, Write type ( 2.1.1 ) type (2.1.1) type (2.1.1) Lagrange function of :
∑ i = 1 N l o g ( π i ) ⋅ P ( X , y 1 = s i ∣ λ ˉ ) + γ ( ∑ i = 1 N π i − 1 ) (2.1.2) \sum_{i=1}^{N} log(\pi_{i}) \cdot P(X, y1=s_i | \bar{\lambda}) + \gamma(\sum_{i=1}^{N} \pi_i - 1) \tag{2.1.2} i=1∑Nlog(πi)⋅P(X,y1=si∣λˉ)+γ(i=1∑Nπi−1)(2.1.2)
Yes type ( 2.1.2 ) type (2.1.2) type (2.1.2) About π i \pi_i πi And make the result equal to 0, have to :
P ( X , y 1 = s i ∣ λ ˉ ) π i + γ = 0 \frac{P(X, y1=s_i | \bar{\lambda})}{\pi_{i}} + \gamma = 0 πiP(X,y1=si∣λˉ)+γ=0 P ( X , y 1 = s i ∣ λ ˉ ) + γ π i = 0 (2.1.3) P(X, y1=s_i | \bar{\lambda}) + \gamma \pi_{i} = 0 \tag{2.1.3} P(X,y1=si∣λˉ)+γπi=0(2.1.3)
Yes type ( 2.1.3 ) type (2.1.3) type (2.1.3) All in i i i Sum of possible situations , obtain :
∑ i = 1 N [ P ( X , y 1 = s i ∣ λ ˉ ) + γ π i ] = 0 \sum_{i=1}^{N} [P(X, y1=s_i | \bar{\lambda}) + \gamma \pi_{i}] = 0 i=1∑N[P(X,y1=si∣λˉ)+γπi]=0 ∑ i = 1 N P ( X , y 1 = s i ∣ λ ˉ ) + γ ∑ i = 1 N π i = 0 (2.1.4) \sum_{i=1}^{N} P(X, y1=s_i | \bar{\lambda}) + \gamma \sum_{i=1}^{N} \pi_{i} = 0 \tag{2.1.4} i=1∑NP(X,y1=si∣λˉ)+γi=1∑Nπi=0(2.1.4) because
{ ∑ i = 1 N P ( X , y 1 = s i ∣ λ ˉ ) = P ( X ∣ λ ˉ ) ∑ i = 1 N π i = 1 \begin{cases} \sum_{i=1}^{N} P(X, y1=s_i | \bar{\lambda}) = P(X | \bar {\lambda}) \\ \\ \sum_{i=1}^{N} \pi_{i} = 1 \end{cases} ⎩⎪⎨⎪⎧∑i=1NP(X,y1=si∣λˉ)=P(X∣λˉ)∑i=1Nπi=1 therefore
γ = − P ( X ∣ λ ˉ ) (2.1.5) \gamma = -P(X | \bar {\lambda}) \tag{2.1.5} γ=−P(X∣λˉ)(2.1.5)
So bring it into type ( 2.1.3 ) type (2.1.3) type (2.1.3) after , Get parameters π i \pi_i πi Maximum likelihood estimation of :
π ^ i = P ( X , y 1 = s i ∣ λ ˉ ) P ( X ∣ λ ˉ ) (2.1.6) \hat{\pi}_i = \frac{P(X, y1=s_i | \bar{\lambda})}{P(X | \bar {\lambda})} \tag{2.1.6} π^i=P(X∣λˉ)P(X,y1=si∣λˉ)(2.1.6)
2.2 Transfer probability a i j a_{ij} aij Estimation
a ^ i j = arg max π i ∑ Y [ ∑ t = 1 T − 1 l o g ( a i t i t + 1 ) ] ⋅ P ( X , Y ∣ λ ˉ ) (2.5) \hat{a}_{ij} = \argmax_{\pi_i} \sum_{Y} [\sum_{t=1}^{T-1} log(a_{i_ti_{t+1}})] \cdot P(X, Y | \bar{\lambda}) \tag{2.5} a^ij=πiargmaxY∑[t=1∑T−1log(aitit+1)]⋅P(X,Y∣λˉ)(2.5) a ^ i j = arg max π i ∑ i = 1 N ∑ j = 1 N ∑ t = 1 T − 1 l o g ( a i j ) ⋅ P ( X , y t = s i , y t + 1 = s j ∣ λ ˉ ) (2.2.1) \hat{a}_{ij} = \argmax_{\pi_i} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T-1} log(a_{ij}) \cdot P(X, y_t=s_i, y_{t+1}=s_j | \bar{\lambda}) \tag{2.2.1} a^ij=πiargmaxi=1∑Nj=1∑Nt=1∑T−1log(aij)⋅P(X,yt=si,yt+1=sj∣λˉ)(2.2.1)
Empathy , The application has constraints ∑ j = 1 N a i j = 1 \sum_{j=1}^{N} a_{ij} = 1 ∑j=1Naij=1 Lagrange multiplier method , We can work out a i j a_{ij} aij Maximum likelihood estimation of :
a ^ i j = ∑ t = 1 T − 1 P ( X , y t = s i , y t + 1 = s j ∣ λ ˉ ) ∑ t = 1 T − 1 P ( X , y t = s i ∣ λ ˉ ) (2.2.2) \hat{a}_{ij} = \frac{ \sum_{t=1}^{T-1} P(X, y_t=s_i, y_{t+1}=s_j | \bar{\lambda}) }{ \sum_{t=1}^{T-1} P(X, y_t=s_i | \bar{\lambda}) } \tag{2.2.2} a^ij=∑t=1T−1P(X,yt=si∣λˉ)∑t=1T−1P(X,yt=si,yt+1=sj∣λˉ)(2.2.2)
2.3 Observed probability of occurrence b j ( v l ) b_j(v_l) bj(vl) Estimation
b ^ j ( k ) = arg max π i ∑ Y [ ∑ t = 1 T l o g ( b i t ( x t ) ) ] ⋅ P ( X , Y ∣ λ ˉ ) (2.6) \hat{b}_j(k) = \argmax_{\pi_i} \sum_{Y} [\sum_{t=1}^{T} log(b_{i_t}(x_t)) ] \cdot P(X, Y | \bar{\lambda}) \tag{2.6} b^j(k)=πiargmaxY∑[t=1∑Tlog(bit(xt))]⋅P(X,Y∣λˉ)(2.6) b ^ j ( k ) = arg max π i ∑ j = 1 N [ ∑ t = 1 T l o g ( b j ( x t ) ) ] ⋅ P ( X , y t = s j ∣ λ ˉ ) (2.3.1) \hat{b}_j(k) = \argmax_{\pi_i} \sum_{j=1}^{N} [\sum_{t=1}^{T} log(b_{j}(x_t)) ] \cdot P(X, y_t=s_j | \bar{\lambda}) \tag{2.3.1} b^j(k)=πiargmaxj=1∑N[t=1∑Tlog(bj(xt))]⋅P(X,yt=sj∣λˉ)(2.3.1)
The Lagrange multiplier method is also applied , The constraint is ∑ k = 1 M b j ( k ) = 1 \sum_{k=1}^{M} b_j(k) = 1 ∑k=1Mbj(k)=1. Be careful , Only in x t = o k x_t = o_k xt=ok when b j ( x t ) b_j(x_t) bj(xt) Yes b j ( k ) b_j(k) bj(k) The partial derivative of is not always 0, Get b j ( k ) b_j(k) bj(k) Maximum likelihood estimation of :
b ^ j ( k ) = ∑ t = 1 T P ( X ∩ x ˉ t , x t = o k , y t = s j ∣ λ ˉ ) ∑ t = 1 T ∑ k = 1 M P ( X ∩ x ˉ t , x t = o k , y t = s j ∣ λ ˉ ) \hat{b}_j(k) = \frac{ \sum_{t=1}^{T} P(X \cap \bar{x}_t, x_t=o_k, y_t=s_j | \bar{\lambda}) }{ \sum_{t=1}^{T} \sum_{k=1}^{M} P(X \cap \bar{x}_t, x_t=o_k, y_t=s_j | \bar{\lambda}) } b^j(k)=∑t=1T∑k=1MP(X∩xˉt,xt=ok,yt=sj∣λˉ)∑t=1TP(X∩xˉt,xt=ok,yt=sj∣λˉ)
2.4 Baum-Welch Algorithm implementation
Input : Observation sequence of random process
Output : Maximum likelihood estimation of hidden Markov model parameters .
(1) initialization
about n = 0 n=0 n=0, Select any that meets the defined range a i j ( 0 ) , b j ( k ) ( 0 ) , π i ( 0 ) a_{ij}^{(0)}, \ b_{j}(k)^{(0)}, \ \pi_i^{(0)} aij(0), bj(k)(0), πi(0), Get the initial value of model parameters λ ( 0 ) = ( A ( 0 ) , B ( 0 ) , π ( 0 ) ) \lambda^{(0)} = (A^{(0)}, B^{(0)}, \pi^{(0)}) λ(0)=(A(0),B(0),π(0));
(2) Iterative training
a i j ( n + 1 ) = ∑ t = 1 T − 1 ξ t ( i , j ∣ X , λ ( n ) ) ∑ t = 1 T − 1 γ t ( i ∣ X , λ ( n ) ) a_{ij}^{(n+1)} = \ \frac{ \sum_{t=1}^{T-1} \xi_t(i,j | X, \lambda^{(n)}) }{ \sum_{t=1}^{T-1} \gamma_t(i | X, \lambda^{(n)}) } aij(n+1)= ∑t=1T−1γt(i∣X,λ(n))∑t=1T−1ξt(i,j∣X,λ(n))
b j ( k ) ( n + 1 ) = ∑ t = 1 , x t = o k T − 1 γ t ( j ∣ X , λ ( n ) ) ∑ t = 1 T − 1 γ t ( j ∣ X , λ ( n ) ) b_j(k)^{(n+1)} = \ \frac{ \sum_{t=1, \ x_t=o_k}^{T-1} \gamma_t(j | X, \lambda^{(n)}) }{ \sum_{t=1}^{T-1} \gamma_t(j | X, \lambda^{(n)}) } bj(k)(n+1)= ∑t=1T−1γt(j∣X,λ(n))∑t=1, xt=okT−1γt(j∣X,λ(n))
π i ( n + 1 ) = γ 1 ( i ∣ X , λ ( n ) ) \pi_i^{(n+1)} = \gamma_1(i | X, \lambda^{(n)}) πi(n+1)=γ1(i∣X,λ(n))
In style ξ t ( i , j ) \xi_t(i,j) ξt(i,j) and γ t ( i ) \gamma_t(i) γt(i) from HMM Forward algorithm and backward algorithm of the model are introduced , Please refer to the author's article for the specific derivation process : The hidden Markov model (HMM): Calculate the probability of occurrence of the observation sequence No 4 Section .
(3) End
When λ ( n + 1 ) \lambda^{(n+1)} λ(n+1) Almost no longer changes or changes are less than a given threshold ( That is, it has converged ) when , Stop iterative training . Get the maximum likelihood estimation of the model parameters :
{ a ^ i j = a i j ( n + 1 ) b ^ j ( k ) = b j ( k ) ( n + 1 ) π ^ i = π i ( n + 1 ) \begin{cases} \hat{a}_{ij} = a_{ij}^{(n+1)} \\ \\ \hat{b}_j(k) = b_j(k)^{(n+1)} \\ \\ \hat{\pi}_i = \pi_i^{(n+1)} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧a^ij=aij(n+1)b^j(k)=bj(k)(n+1)π^i=πi(n+1)
Derivation process , See the author's article :EM Algorithm (expectation maximization algorithm) Maximum likelihood estimation method of parameters of probability model with hidden variables ︎
边栏推荐
- Research and investment strategy report of China's sodium sulfate industry (2022 Edition)
- Preliminary study on golang crawler framework
- 毕业季 | 华为专家亲授面试秘诀:如何拿到大厂高薪offer?
- Rhcsa Road
- What are the differences between PHP and DW
- Leetcode 77 combination -- backtracking method
- How wild are hackers' ways of making money? CTF reverse entry Guide
- Template engine velocity Foundation
- P2893 [USACO08FEB] Making the Grade G(dp&优先队列)
- 【C语言基础】12 字符串
猜你喜欢

Installation and use of sqoop

Ring iron pronunciation, dynamic and noiseless, strong and brilliant, magic wave hifiair Bluetooth headset evaluation

Tutorial on the principle and application of database system (003) -- MySQL installation and configuration: manually configure MySQL (Windows Environment)

Building blocks for domestic databases, stonedb integrated real-time HTAP database is officially open source!

VMware virtual machine failed during startup: VMware Workstation is incompatible with hyper-v

How to use etcd to realize distributed /etc directory

你还在用收费的文档管理工具?我这有更牛逼的选择!完全免费

Tutorial on the principle and application of database system (002) -- MySQL installation and configuration: MySQL software uninstallation (Windows Environment)

今天14:00 | 港大、北航、耶鲁、清华、加大等15位ICLR一作讲者精彩继续!
![[nodemon] app crashed - waiting for file changes before starting... resolvent](/img/ee/9830afd86e092851a2a906cb994949.png)
[nodemon] app crashed - waiting for file changes before starting... resolvent
随机推荐
毕业季 | 华为专家亲授面试秘诀:如何拿到大厂高薪offer?
Template Engine Velocity Foundation
Gaussdb (for MySQL):partial result cache, which accelerates the operator by caching intermediate results
【直播预约】数据库OBCP认证全面升级公开课
【C补充】【字符串】按日期排序显示一个月的日程
博睿数据一体化智能可观测平台入选中国信通院2022年“云原生产品名录”
China sorbitol Market Forecast and investment strategy report (2022 Edition)
Analysis of PostgreSQL storage structure
How does go use symmetric encryption?
数据库系统原理与应用教程(001)—— MySQL 安装与配置:MySQL 软件的安装(windows 环境)
sql刷题627. 变更性别
Redis distributed lock
C語言輸入/輸出流和文件操作
Virtual serial port simulator and serial port debugging assistant tutorial "suggestions collection"
Red team Chapter 8: blind guess the difficult utilization process of the package to upload vulnerabilities
Girls who want to do software testing look here
sql刷题1050. 合作过至少三次的演员和导演
SQL question brushing 586 Customers with the most orders
PR basic clip operation / video export operation
嗨 FUN 一夏,与 StarRocks 一起玩转 SQL Planner!