当前位置:网站首页>Yolov5 learning notes (I) -- principle overview
Yolov5 learning notes (I) -- principle overview
2022-07-28 23:57:00 【The birch tree has no tears】
Catalog
One 、 Target detection Overview
1.2.2 IOU( Bounding box regression )
1.3.2 YOLOv5 Network architecture
One 、 Target detection Overview
1.1 Data set introduction
- PASCAL VOC

- MS COCO

1.2 Performance indicators

1.2.1 Confusion matrix
1.2.2 IOU( Bounding box regression )
IOU=1 Is completely overlapping

according to IOU Set the threshold to judge TP still FP , For example, the overlap is 0.5

1.2.3 AP&mAP
AP It is to measure the quality of the learned model in each category
mAP It is to measure the quality of the learned model in all categories AP Average value

- Different data sets for AP and mAP The concept of is still different



- AP Calculation


1.2.4 Detection speed

1.3 YOLO The history of
1.3.1 Algorithmic thought
- yolov3 Frame diagram

First, the characteristic image is obtained by convolution neural network , Then mesh the image , Each grid carries out frame detection and category probability map separately , The final result .

Each small box contains the coordinates of the bounding box 、 Goal score and category score

- Multiscale fusion
After convolution neural network, we can get different sizes of characteristic graphs , The fusion of feature maps of different sizes is conducive to the detection of small targets .

Image convolution passes 32 Times down sampling 19*19 Pictures of the , Each grid will predict and draw anchor boxes separately

Preset the size of some bounding boxes , Each scale has several anchor frames

- Loss function

1.3.2 YOLOv5 Network architecture
A network often has a backbone network (Backbone)+ neck (Neck)+ Head (Head) form


- visualization

![]()
pip install onnx>=1.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install coremltools==4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
python models/export.py --weights weights/yolov5s.pt --img 640 --batch 1
边栏推荐
- 【详细超简单】如何使用WebSocket链接
- Jincang database kingbasees client Programming Interface Guide - ODBC feature support constraints
- Websocket heartbeat mechanism (keep alive mechanism)
- DevOps在物联网解决方案中的应用
- Eight performance analysis indicators of effective supply chain management (Part 1)
- C语言 n*n矩阵求值及求逆矩阵[通俗易懂]
- 【C】喝汽水,找单身狗问题
- Tyrosine decarboxylase -- characteristics of tyrosine decarboxylase of Streptococcus faecalis in Worthington
- Worthington核糖核酸测定详细攻略
- 1-4 类的复习
猜你喜欢

Okaleido生态核心权益OKA,尽在聚变Mining模式

智能垃圾桶(七)——SG90舵机的介绍与使用(树莓派pico实现)

有效供应链管理的八大绩效分析指标(上)

【CNN】为什么CNN的卷积核大小一般都是奇数

基因组 DNA 分离丨Worthington核糖核酸酶A

脲酶丨Worthington杰克豆脲酶的特性及测定方案

失败率高达80%,数字化转型如何正确完成战略规划?

Is the declarative code of compose so concise?

【C】替换空格,宏实现整数的二进制奇偶位交换
![[detailed and super simple] how to use websocket links](/img/bf/5068f84e0d81a8330529cc4d7d5d27.png)
[detailed and super simple] how to use websocket links
随机推荐
websocket心跳机制(保活机制)
有效供应链管理的八大绩效分析指标(上)
EN 1935建筑五金.单轴铰链—CE认证
Worthington丨STEMxyme的分类和测定方法
Arm-A53资料「建议收藏」
多传感器融合定位(一)——3D激光里程计
pycharm配置运行环境
PHP 海报二维码合成
In depth analysis of integrated learning xgboost (Continued)
解决:Direct local .aar file dependencies are not supported when building an AAR.
以JSP为视图解析器搭建SSM项目
Machine learning problem notes
Compatibility description between kingbasees and Oracle (3. Common functions)
fastdfs工作原理(技术原理)
酪氨酸脱羧酶丨Worthington粪链球菌酪氨酸脱羧酶的特征
深度之眼(十八)——偏导数
器利而工善,以RPA+LCAP赋能企业司库管理数字化升级
利用递归和链表头插法实现链表成组的翻转——LeetCode25 K个一组翻转链表
你学过的每样东西,都会在你一生中的某个时刻派上用场(转)
DoIP测试开发实践




