当前位置:网站首页>Flink SQL builds real-time data warehouse DWD layer
Flink SQL builds real-time data warehouse DWD layer
2022-08-02 19:03:00 【Big data study club】
1.实时数仓DWD层
DWDis the detail data layer,The table structure and granularity of this layer remains the same as the original table,不过需要对ODS层数据进行清洗、维度退化、脱敏等,The resulting data is clean,完整的、一致的数据.
(1)对用户行为数据解析.
(2)Null filter for core data.
(3)Remodel the business data collection dimensional model,即维度退化.
2.Dimensional modeling of vehicle travel
3.基于Flink SQL搭建实时数仓DWD层
package com.bigdata.warehouse.dwd;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class DwdCarsLog {
public static void main(String[] args) {
//1.获取Stream的执行环境
StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();
//设置并行度
//senv.setParallelism(1);
//开启checkpoint容错
//senv.enableCheckpointing(60000);
//senv.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//senv.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);
//senv.getCheckpointConfig().setCheckpointTimeout(10000);
//senv.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//设置状态后端
//(1)开启RocksDB
//senv.setStateBackend(new EmbeddedRocksDBStateBackend());
//(2)设置checkpoint 存储
//senv.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage("hdfs://mycluster/flink/checkpoints"));
//2.创建表执行环境
StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv);
//3.Read the vehicle entry and exit fact table
tEnv.executeSql("CREATE TABLE ods_cars_log (" +
" id STRING," +
" opTime STRING," +
" ctype SMALLINT," +
" carCode STRING," +
" cId BIGINT," +
" proc_time as PROCTIME() "+
") WITH (" +
" 'connector' = 'kafka'," +
" 'topic' = 'ods_cars_log'," +
" 'properties.bootstrap.servers' = 'hadoop1:9092'," +
" 'properties.group.id' = 'ods_cars_log'," +
" 'scan.startup.mode' = 'earliest-offset'," +
" 'format' = 'json'" +
")");
//4.Read the vehicle dimension table
tEnv.executeSql("CREATE TABLE dim_base_cars ( " +
" id INT, " +
" owerId INT, " +
" carCode STRING, " +
" carColor STRING, " +
" type TINYINT, " +
" remark STRING, " +
" PRIMARY KEY(id) NOT ENFORCED " +
") WITH ( " +
" 'connector' = 'jdbc', " +
" 'url' = 'jdbc:mysql://hadoop1:3306/sca?useUnicode=true&characterEncoding=utf8', " +
" 'table-name' = 'dim_base_cars', " +
" 'username' = 'hive', " +
" 'password' = 'hive' " +
")");
//5.Relate fact table and dimension table to get vehicle entry and exit details
Table resultTable = tEnv.sqlQuery("select " +
"cl.id, " +
"c.owerId, " +
"cl.opTime, " +
"cl.cId, " +
"cl.carCode, " +
"cl.ctype " +
"from ods_cars_log cl " +
"left join dim_base_cars for system_time as of cl.proc_time as c " +
"on cl.carCode=c.carCode");
tEnv.createTemporaryView("resultTable",resultTable);
//6.创建dwd_cars_log表
tEnv.executeSql("CREATE TABLE dwd_cars_log ( " +
" id STRING, " +
" owerId INT, " +
" opTime STRING, " +
" cId BIGINT, " +
" carCode STRING, " +
" ctype SMALLINT, " +
" PRIMARY KEY (id) NOT ENFORCED " +
") WITH ( " +
" 'connector' = 'upsert-kafka', " +
" 'topic' = 'dwd_cars_log', " +
" 'properties.bootstrap.servers' = 'hadoop1:9092', " +
" 'key.format' = 'json', " +
" 'value.format' = 'json' " +
")");
//7.将关联结果写入dwd_cars_log表
tEnv.executeSql("insert into dwd_cars_log select * from resultTable");
}
}
4.基于Kafka创建DWD层topic
#创建kafka topic
bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic dwd_cars_log --replication-factor 3 --partitions 1
5.View real-time data warehousesDWD层结果
#消费kafka topic
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic dwd_cars_log --from-beginning
If the console prints the expected result,Explain real-time data warehouseDWD层搭建成功.
{"id":"3bfe7e59-4771-4aa8-ab90-80c98010c4ea","owerId":10022759,"opTime":"2022-07-15 11:59:55.443","cId":10000095,"carCode":"青I·PY2MR","ctype":2}
{"id":"36208b62-739b-4eea-abf4-9f26b85b85d1","owerId":10075672,"opTime":"2022-07-15 11:59:56.443","cId":10000311,"carCode":"渝Z·C0AFY","ctype":1}
{"id":"2a5df539-4668-4a42-8013-978b82b3c318","owerId":10126156,"opTime":"2022-07-15 11:59:57.443","cId":10000526,"carCode":"晋B·1RPVV","ctype":1}
{"id":"2bd0ce39-1c39-4db5-9376-68e297fda4b0","owerId":10206773,"opTime":"2022-07-15 11:59:58.443","cId":10000843,"carCode":"冀D·FX3IJ","ctype":2}
{"id":"2959544d-53f9-43e4-9101-96629fecdcc6","owerId":10153485,"opTime":"2022-07-15 11:59:59.443","cId":10000631,"carCode":"晋D·8OWIR","ctype":2}
{"id":"2fd665f9-ea27-44fd-a8cd-1f204ab2d5fc","owerId":10152560,"opTime":"2022-07-15 12:00:00.099","cId":10000627,"carCode":"贵A·MVO77","ctype":2}
{"id":"3c283bc5-5616-43cf-87b2-c94396ced64f","owerId":10103872,"opTime":"2022-07-15 12:00:01.037","cId":10000425,"carCode":"辽L·3C5DU","ctype":1}
{"id":"3634862d-c824-4829-a017-0082b7514471","owerId":10234908,"opTime":"2022-07-15 12:00:02.376","cId":10000961,"carCode":"沪T·QNNXP","ctype":1}
{"id":"2b4a4d0f-4441-4e75-8437-008dfea5c03c","owerId":10228881,"opTime":"2022-07-15 12:00:03.33","cId":10000938,"carCode":"闽E·GZKRQ","ctype":2}
{"id":"2ce336bc-2b31-4089-ae85-a76921c6a306","owerId":10144509,"opTime":"2022-07-15 12:00:04.819","cId":10000596,"carCode
边栏推荐
猜你喜欢
随机推荐
【面经】被虐了之后,我翻烂了equals源码,总结如下
金仓数据库KingbaseES安全指南--6.11. PAM身份验证
DevOps开发工具对比
【Redis】连接报错:Could not connect to Redis at 127.0.0.1:6379: Connection refused
什么是APS系统?导入APS要注意什么?值得反复观看
synchronized已经不在臃肿了,放下对他的成见之初识轻量级锁
关于我用iVX沉浸式体验了一把0代码项目创建
NC231 只出现一次的数字
看我如何用多线程,帮助运营小姐姐解决数据校对系统变慢!
VMware启动报错:另一个程序已锁定文件的一部分,进程无法访问(删除最近的.lck文件夹)
A tour of gRPC: 06 - gRPC client straming
oracle 和mysql 语句结果不一致问题
JZ32 从上往下打印二叉树
金仓数据库KingbaseES安全指南--6.13. 关于身份验证的常见问题
乌总统解除乌克兰国家安全局信息和情报分析部负责人职务
ActiveMQ漫谈(一)
时间戳格式化「建议收藏」
金仓数据库KingbaseES安全指南--6.12. BSD身份验证
一文搞懂│php 中的 DI 依赖注入
更舒适更安全更时尚 凯翼2023款炫界正式上市