当前位置:网站首页>Flink SQL builds real-time data warehouse DWD layer
Flink SQL builds real-time data warehouse DWD layer
2022-08-02 19:03:00 【Big data study club】
1.实时数仓DWD层
DWDis the detail data layer,The table structure and granularity of this layer remains the same as the original table,不过需要对ODS层数据进行清洗、维度退化、脱敏等,The resulting data is clean,完整的、一致的数据.
(1)对用户行为数据解析.
(2)Null filter for core data.
(3)Remodel the business data collection dimensional model,即维度退化.
2.Dimensional modeling of vehicle travel
3.基于Flink SQL搭建实时数仓DWD层
package com.bigdata.warehouse.dwd;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class DwdCarsLog {
public static void main(String[] args) {
//1.获取Stream的执行环境
StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();
//设置并行度
//senv.setParallelism(1);
//开启checkpoint容错
//senv.enableCheckpointing(60000);
//senv.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//senv.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);
//senv.getCheckpointConfig().setCheckpointTimeout(10000);
//senv.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//设置状态后端
//(1)开启RocksDB
//senv.setStateBackend(new EmbeddedRocksDBStateBackend());
//(2)设置checkpoint 存储
//senv.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage("hdfs://mycluster/flink/checkpoints"));
//2.创建表执行环境
StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv);
//3.Read the vehicle entry and exit fact table
tEnv.executeSql("CREATE TABLE ods_cars_log (" +
" id STRING," +
" opTime STRING," +
" ctype SMALLINT," +
" carCode STRING," +
" cId BIGINT," +
" proc_time as PROCTIME() "+
") WITH (" +
" 'connector' = 'kafka'," +
" 'topic' = 'ods_cars_log'," +
" 'properties.bootstrap.servers' = 'hadoop1:9092'," +
" 'properties.group.id' = 'ods_cars_log'," +
" 'scan.startup.mode' = 'earliest-offset'," +
" 'format' = 'json'" +
")");
//4.Read the vehicle dimension table
tEnv.executeSql("CREATE TABLE dim_base_cars ( " +
" id INT, " +
" owerId INT, " +
" carCode STRING, " +
" carColor STRING, " +
" type TINYINT, " +
" remark STRING, " +
" PRIMARY KEY(id) NOT ENFORCED " +
") WITH ( " +
" 'connector' = 'jdbc', " +
" 'url' = 'jdbc:mysql://hadoop1:3306/sca?useUnicode=true&characterEncoding=utf8', " +
" 'table-name' = 'dim_base_cars', " +
" 'username' = 'hive', " +
" 'password' = 'hive' " +
")");
//5.Relate fact table and dimension table to get vehicle entry and exit details
Table resultTable = tEnv.sqlQuery("select " +
"cl.id, " +
"c.owerId, " +
"cl.opTime, " +
"cl.cId, " +
"cl.carCode, " +
"cl.ctype " +
"from ods_cars_log cl " +
"left join dim_base_cars for system_time as of cl.proc_time as c " +
"on cl.carCode=c.carCode");
tEnv.createTemporaryView("resultTable",resultTable);
//6.创建dwd_cars_log表
tEnv.executeSql("CREATE TABLE dwd_cars_log ( " +
" id STRING, " +
" owerId INT, " +
" opTime STRING, " +
" cId BIGINT, " +
" carCode STRING, " +
" ctype SMALLINT, " +
" PRIMARY KEY (id) NOT ENFORCED " +
") WITH ( " +
" 'connector' = 'upsert-kafka', " +
" 'topic' = 'dwd_cars_log', " +
" 'properties.bootstrap.servers' = 'hadoop1:9092', " +
" 'key.format' = 'json', " +
" 'value.format' = 'json' " +
")");
//7.将关联结果写入dwd_cars_log表
tEnv.executeSql("insert into dwd_cars_log select * from resultTable");
}
}
4.基于Kafka创建DWD层topic
#创建kafka topic
bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic dwd_cars_log --replication-factor 3 --partitions 1
5.View real-time data warehousesDWD层结果
#消费kafka topic
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic dwd_cars_log --from-beginning
If the console prints the expected result,Explain real-time data warehouseDWD层搭建成功.
{"id":"3bfe7e59-4771-4aa8-ab90-80c98010c4ea","owerId":10022759,"opTime":"2022-07-15 11:59:55.443","cId":10000095,"carCode":"青I·PY2MR","ctype":2}
{"id":"36208b62-739b-4eea-abf4-9f26b85b85d1","owerId":10075672,"opTime":"2022-07-15 11:59:56.443","cId":10000311,"carCode":"渝Z·C0AFY","ctype":1}
{"id":"2a5df539-4668-4a42-8013-978b82b3c318","owerId":10126156,"opTime":"2022-07-15 11:59:57.443","cId":10000526,"carCode":"晋B·1RPVV","ctype":1}
{"id":"2bd0ce39-1c39-4db5-9376-68e297fda4b0","owerId":10206773,"opTime":"2022-07-15 11:59:58.443","cId":10000843,"carCode":"冀D·FX3IJ","ctype":2}
{"id":"2959544d-53f9-43e4-9101-96629fecdcc6","owerId":10153485,"opTime":"2022-07-15 11:59:59.443","cId":10000631,"carCode":"晋D·8OWIR","ctype":2}
{"id":"2fd665f9-ea27-44fd-a8cd-1f204ab2d5fc","owerId":10152560,"opTime":"2022-07-15 12:00:00.099","cId":10000627,"carCode":"贵A·MVO77","ctype":2}
{"id":"3c283bc5-5616-43cf-87b2-c94396ced64f","owerId":10103872,"opTime":"2022-07-15 12:00:01.037","cId":10000425,"carCode":"辽L·3C5DU","ctype":1}
{"id":"3634862d-c824-4829-a017-0082b7514471","owerId":10234908,"opTime":"2022-07-15 12:00:02.376","cId":10000961,"carCode":"沪T·QNNXP","ctype":1}
{"id":"2b4a4d0f-4441-4e75-8437-008dfea5c03c","owerId":10228881,"opTime":"2022-07-15 12:00:03.33","cId":10000938,"carCode":"闽E·GZKRQ","ctype":2}
{"id":"2ce336bc-2b31-4089-ae85-a76921c6a306","owerId":10144509,"opTime":"2022-07-15 12:00:04.819","cId":10000596,"carCode
边栏推荐
猜你喜欢
随机推荐
持续交付(一)JenkinsAPI接口调用
金仓数据库KingbaseES安全指南--6.13. 关于身份验证的常见问题
锁定和并发控制(二)
扎克伯格“喜迎”苹果AR产品,上市两年终迎大幅涨价
2.NVIDIA Deepstream开发指南中文版--自述文件
亲戚3.5W入职华为后,我也选择了转行……
特殊变量 (SQL)
Arduino 硬件编程语言基础学习入门
JZ11 旋转数组的最小数字
jar包应用的简单启停脚本
融云「 IM 进阶实战高手课」系列直播上线
2022年PMP考试应该注意些什么?
如何为项目匹配资源技能和要求?
持续集成(三)Jenkins新增节点
A tour of gRPC: 06 - gRPC client straming
Pytest学习笔记
Timestamp formatting "recommended collection"
Gartner发布,年度Challenger!
ActiveMQ漫谈(一)
几种常见的跨域解决方法