当前位置:网站首页>Flink SQL builds real-time data warehouse DWD layer
Flink SQL builds real-time data warehouse DWD layer
2022-08-02 19:03:00 【Big data study club】
1.实时数仓DWD层
DWDis the detail data layer,The table structure and granularity of this layer remains the same as the original table,不过需要对ODS层数据进行清洗、维度退化、脱敏等,The resulting data is clean,完整的、一致的数据.
(1)对用户行为数据解析.
(2)Null filter for core data.
(3)Remodel the business data collection dimensional model,即维度退化.
2.Dimensional modeling of vehicle travel

3.基于Flink SQL搭建实时数仓DWD层
package com.bigdata.warehouse.dwd;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.Table;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;public class DwdCarsLog {public static void main(String[] args) {//1.获取Stream的执行环境StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();//设置并行度//senv.setParallelism(1);//开启checkpoint容错//senv.enableCheckpointing(60000);//senv.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//senv.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);//senv.getCheckpointConfig().setCheckpointTimeout(10000);//senv.getCheckpointConfig().setMaxConcurrentCheckpoints(1);//设置状态后端//(1)开启RocksDB//senv.setStateBackend(new EmbeddedRocksDBStateBackend());//(2)设置checkpoint 存储//senv.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage("hdfs://mycluster/flink/checkpoints"));//2.创建表执行环境StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv);//3.Read the vehicle entry and exit fact tabletEnv.executeSql("CREATE TABLE ods_cars_log (" +" id STRING," +" opTime STRING," +" ctype SMALLINT," +" carCode STRING," +" cId BIGINT," +" proc_time as PROCTIME() "+") WITH (" +" 'connector' = 'kafka'," +" 'topic' = 'ods_cars_log'," +" 'properties.bootstrap.servers' = 'hadoop1:9092'," +" 'properties.group.id' = 'ods_cars_log'," +" 'scan.startup.mode' = 'earliest-offset'," +" 'format' = 'json'" +")");//4.Read the vehicle dimension tabletEnv.executeSql("CREATE TABLE dim_base_cars ( " +" id INT, " +" owerId INT, " +" carCode STRING, " +" carColor STRING, " +" type TINYINT, " +" remark STRING, " +" PRIMARY KEY(id) NOT ENFORCED " +") WITH ( " +" 'connector' = 'jdbc', " +" 'url' = 'jdbc:mysql://hadoop1:3306/sca?useUnicode=true&characterEncoding=utf8', " +" 'table-name' = 'dim_base_cars', " +" 'username' = 'hive', " +" 'password' = 'hive' " +")");//5.Relate fact table and dimension table to get vehicle entry and exit detailsTable resultTable = tEnv.sqlQuery("select " +"cl.id, " +"c.owerId, " +"cl.opTime, " +"cl.cId, " +"cl.carCode, " +"cl.ctype " +"from ods_cars_log cl " +"left join dim_base_cars for system_time as of cl.proc_time as c " +"on cl.carCode=c.carCode");tEnv.createTemporaryView("resultTable",resultTable);//6.创建dwd_cars_log表tEnv.executeSql("CREATE TABLE dwd_cars_log ( " +" id STRING, " +" owerId INT, " +" opTime STRING, " +" cId BIGINT, " +" carCode STRING, " +" ctype SMALLINT, " +" PRIMARY KEY (id) NOT ENFORCED " +") WITH ( " +" 'connector' = 'upsert-kafka', " +" 'topic' = 'dwd_cars_log', " +" 'properties.bootstrap.servers' = 'hadoop1:9092', " +" 'key.format' = 'json', " +" 'value.format' = 'json' " +")");//7.将关联结果写入dwd_cars_log表tEnv.executeSql("insert into dwd_cars_log select * from resultTable");}}
4.基于Kafka创建DWD层topic
#创建kafka topic
bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic dwd_cars_log --replication-factor 3 --partitions 15.View real-time data warehousesDWD层结果
#消费kafka topic
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic dwd_cars_log --from-beginningIf the console prints the expected result,Explain real-time data warehouseDWD层搭建成功.
{"id":"3bfe7e59-4771-4aa8-ab90-80c98010c4ea","owerId":10022759,"opTime":"2022-07-15 11:59:55.443","cId":10000095,"carCode":"青I·PY2MR","ctype":2}
{"id":"36208b62-739b-4eea-abf4-9f26b85b85d1","owerId":10075672,"opTime":"2022-07-15 11:59:56.443","cId":10000311,"carCode":"渝Z·C0AFY","ctype":1}{"id":"2a5df539-4668-4a42-8013-978b82b3c318","owerId":10126156,"opTime":"2022-07-15 11:59:57.443","cId":10000526,"carCode":"晋B·1RPVV","ctype":1}{"id":"2bd0ce39-1c39-4db5-9376-68e297fda4b0","owerId":10206773,"opTime":"2022-07-15 11:59:58.443","cId":10000843,"carCode":"冀D·FX3IJ","ctype":2}{"id":"2959544d-53f9-43e4-9101-96629fecdcc6","owerId":10153485,"opTime":"2022-07-15 11:59:59.443","cId":10000631,"carCode":"晋D·8OWIR","ctype":2}{"id":"2fd665f9-ea27-44fd-a8cd-1f204ab2d5fc","owerId":10152560,"opTime":"2022-07-15 12:00:00.099","cId":10000627,"carCode":"贵A·MVO77","ctype":2}{"id":"3c283bc5-5616-43cf-87b2-c94396ced64f","owerId":10103872,"opTime":"2022-07-15 12:00:01.037","cId":10000425,"carCode":"辽L·3C5DU","ctype":1}{"id":"3634862d-c824-4829-a017-0082b7514471","owerId":10234908,"opTime":"2022-07-15 12:00:02.376","cId":10000961,"carCode":"沪T·QNNXP","ctype":1}{"id":"2b4a4d0f-4441-4e75-8437-008dfea5c03c","owerId":10228881,"opTime":"2022-07-15 12:00:03.33","cId":10000938,"carCode":"闽E·GZKRQ","ctype":2}{"id":"2ce336bc-2b31-4089-ae85-a76921c6a306","owerId":10144509,"opTime":"2022-07-15 12:00:04.819","cId":10000596,"carCode
边栏推荐
猜你喜欢
随机推荐
DSP-ADAU1452输入通道配置
Default username and password (SQL)
【Redis】连接报错:Could not connect to Redis at 127.0.0.1:6379: Connection refused
RowBounds实现分页
Switch 块、Switch 表达式、Switch 模式匹配,越来越好用的 Switch
RAID存储级别分类
Limit实现分页
领导无线边缘AI的联合神经形态学习,具有较高的识别精度以及较低的能耗
Detailed explanation of the principle of JWT_The principle of electromagnetic induction
2.NVIDIA Deepstream开发指南中文版--自述文件
金仓数据库KingbaseES安全指南--6.10. Peer身份验证
链表的归并排序[自顶向下分治 || 自低向上合并]
Alibaba最新神作——1015页分布式全栈手册太香了
JZ11 旋转数组的最小数字
es6 map使用场景
金仓数据库 OCCI 迁移指南(4. KingbaseES 的 OCCI 迁移指南)
融云「 IM 进阶实战高手课」系列直播上线
3.NVIDIA Deepstream开发指南中文版--Deepstream 环境配置
DevOps开发工具对比
JZ42 连续子数组的最大和

![[LeetCode]剑指 Offer 55 - I. 二叉树的深度](/img/97/d2ae4a28e553cfe9889d3be2d2360e.png)







