当前位置:网站首页>Flink SQL builds real-time data warehouse DWD layer

Flink SQL builds real-time data warehouse DWD layer

2022-08-02 19:03:00 Big data study club

1.实时数仓DWD层

DWDis the detail data layer,The table structure and granularity of this layer remains the same as the original table,不过需要对ODS层数据进行清洗、维度退化、脱敏等,The resulting data is clean,完整的、一致的数据.

(1)对用户行为数据解析.

(2)Null filter for core data.

(3)Remodel the business data collection dimensional model,即维度退化.

2.Dimensional modeling of vehicle travel

3.基于Flink SQL搭建实时数仓DWD层

package com.bigdata.warehouse.dwd;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.Table;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;public class DwdCarsLog {
       public static void main(String[] args) {
   
            //1.获取Stream的执行环境StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();            //设置并行度            //senv.setParallelism(1);            //开启checkpoint容错//senv.enableCheckpointing(60000);//senv.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//senv.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);//senv.getCheckpointConfig().setCheckpointTimeout(10000);//senv.getCheckpointConfig().setMaxConcurrentCheckpoints(1);            //设置状态后端            //(1)开启RocksDB            //senv.setStateBackend(new EmbeddedRocksDBStateBackend());            //(2)设置checkpoint 存储            //senv.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage("hdfs://mycluster/flink/checkpoints"));            //2.创建表执行环境            StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv);            //3.Read the vehicle entry and exit fact table         tEnv.executeSql("CREATE TABLE ods_cars_log (" +                "  id STRING," +                "  opTime STRING," +                "  ctype SMALLINT," +                "  carCode STRING," +                "  cId BIGINT," +                "  proc_time as PROCTIME() "+                ") WITH (" +                "  'connector' = 'kafka'," +                "  'topic' = 'ods_cars_log'," +                "  'properties.bootstrap.servers' = 'hadoop1:9092'," +                "  'properties.group.id' = 'ods_cars_log'," +                "  'scan.startup.mode' = 'earliest-offset'," +                "  'format' = 'json'" +                ")");
            //4.Read the vehicle dimension table            tEnv.executeSql("CREATE TABLE dim_base_cars ( " +                "  id INT, " +                "  owerId INT, " +                "  carCode STRING, " +                "  carColor STRING, " +                "  type TINYINT, " +                "  remark STRING, " +                "  PRIMARY KEY(id) NOT ENFORCED " +                ") WITH ( " +                "  'connector' = 'jdbc', " +                "  'url' = 'jdbc:mysql://hadoop1:3306/sca?useUnicode=true&characterEncoding=utf8', " +                "  'table-name' = 'dim_base_cars', " +                "  'username' = 'hive', " +                "  'password' = 'hive' " +                ")");
            //5.Relate fact table and dimension table to get vehicle entry and exit details            Table resultTable = tEnv.sqlQuery("select " +                "cl.id, " +                "c.owerId, " +                "cl.opTime, " +                "cl.cId, " +                "cl.carCode, " +                "cl.ctype " +                "from ods_cars_log cl " +                "left join dim_base_cars for system_time as of cl.proc_time as c " +                "on cl.carCode=c.carCode");            tEnv.createTemporaryView("resultTable",resultTable);
            //6.创建dwd_cars_log表            tEnv.executeSql("CREATE TABLE dwd_cars_log ( " +                " id STRING, " +                " owerId INT, " +                " opTime STRING, " +                " cId BIGINT, " +                " carCode STRING, " +                " ctype SMALLINT, " +                " PRIMARY KEY (id) NOT ENFORCED " +                ") WITH ( " +                " 'connector' = 'upsert-kafka', " +                " 'topic' = 'dwd_cars_log', " +                " 'properties.bootstrap.servers' = 'hadoop1:9092', " +                " 'key.format' = 'json', " +                " 'value.format' = 'json' " +                ")");
            //7.将关联结果写入dwd_cars_log表            tEnv.executeSql("insert into dwd_cars_log select * from resultTable");    }}

4.基于Kafka创建DWD层topic

#创建kafka topic

bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic dwd_cars_log --replication-factor 3 --partitions 1

5.View real-time data warehousesDWD层结果

#消费kafka topic

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic dwd_cars_log --from-beginning

If the console prints the expected result,Explain real-time data warehouseDWD层搭建成功.

{"id":"3bfe7e59-4771-4aa8-ab90-80c98010c4ea","owerId":10022759,"opTime":"2022-07-15 11:59:55.443","cId":10000095,"carCode":"青I·PY2MR","ctype":2}

{"id":"36208b62-739b-4eea-abf4-9f26b85b85d1","owerId":10075672,"opTime":"2022-07-15 11:59:56.443","cId":10000311,"carCode":"渝Z·C0AFY","ctype":1}{"id":"2a5df539-4668-4a42-8013-978b82b3c318","owerId":10126156,"opTime":"2022-07-15 11:59:57.443","cId":10000526,"carCode":"晋B·1RPVV","ctype":1}{"id":"2bd0ce39-1c39-4db5-9376-68e297fda4b0","owerId":10206773,"opTime":"2022-07-15 11:59:58.443","cId":10000843,"carCode":"冀D·FX3IJ","ctype":2}{"id":"2959544d-53f9-43e4-9101-96629fecdcc6","owerId":10153485,"opTime":"2022-07-15 11:59:59.443","cId":10000631,"carCode":"晋D·8OWIR","ctype":2}{"id":"2fd665f9-ea27-44fd-a8cd-1f204ab2d5fc","owerId":10152560,"opTime":"2022-07-15 12:00:00.099","cId":10000627,"carCode":"贵A·MVO77","ctype":2}{"id":"3c283bc5-5616-43cf-87b2-c94396ced64f","owerId":10103872,"opTime":"2022-07-15 12:00:01.037","cId":10000425,"carCode":"辽L·3C5DU","ctype":1}{"id":"3634862d-c824-4829-a017-0082b7514471","owerId":10234908,"opTime":"2022-07-15 12:00:02.376","cId":10000961,"carCode":"沪T·QNNXP","ctype":1}{"id":"2b4a4d0f-4441-4e75-8437-008dfea5c03c","owerId":10228881,"opTime":"2022-07-15 12:00:03.33","cId":10000938,"carCode":"闽E·GZKRQ","ctype":2}{"id":"2ce336bc-2b31-4089-ae85-a76921c6a306","owerId":10144509,"opTime":"2022-07-15 12:00:04.819","cId":10000596,"carCode

原网站

版权声明
本文为[Big data study club]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/214/202208021629234642.html