当前位置:网站首页>MaxPool2d详解--在数组和图像中的应用
MaxPool2d详解--在数组和图像中的应用
2022-06-30 23:05:00 【Philo`】
1、环境要求
1、需要安装Pytorch依赖
2、官方文档conv2d
3、图片需要CIFAR10数据集
2、原理讲解
用卷积核覆盖在原始数据上,选择原始数据中被卷积核覆盖的最大值
选择卷积核覆盖时的最大值,ceil_mode控制卷积核超出原始数据后是否进行保留
3、函数要求
函数:
参数要求
kernel_size
设置卷积核大小的属性stride
和conv2d中的stride一样,是控制移动步幅的属性,这里注意,conv2d默认值是1,但是MaxPool2d默认值是卷积核大小
padding
设置原始数据周围填充的属性dilation:
表明给原始数据之间添加0的属性ceil_mode
控制当卷积核超过原始图像时,是否对max进行保留
4、例子
4.1、数组
代码:
import torch
import torchvision
from torch.nn import Module,MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]],dtype=torch.float32)
print("前",input.shape) # torch.Size([5, 5]),不满足输入的条件,需要进行格式转换
input = torch.reshape(input,(-1,1,5,5))
print("后",input.shape) # 后 torch.Size([1, 1, 5, 5]) 一个bach_size,
class ConNet(Module):
def __init__(self):
super(ConNet, self).__init__()
# 池化层使用,设置卷积核为3*3,超出的部分保留数据
self.maxpool = MaxPool2d(kernel_size=3,ceil_mode=True)
def forward(self,input):
output = self.maxpool(input)
return output
# 实例化对象
Work = ConNet()
# 神经网络调用
output = Work(input)
print(output)
结果:
4.2、图像
代码:
import torch
import torchvision
from torch.nn import Module,MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class ConNet(Module):
def __init__(self):
super(ConNet, self).__init__()
# 池化层使用,设置卷积核为3*3,超出的部分保留数据
self.maxpool = MaxPool2d(kernel_size=3,ceil_mode=True)
def forward(self,input):
output = self.maxpool(input)
return output
# 实例化对象
Work = ConNet()
# CIFAR10数据使用
dataset = torchvision.datasets.CIFAR10("./datasetvision",train=False,download=False,transform=torchvision.transforms.ToTensor())
# 数据加载
dataloader = DataLoader(dataset,batch_size=64)
writer = SummaryWriter("logs_MaxPool")
step = 0
for data in dataloader:
imgs,target = data
writer.add_images("input",imgs,step)
output = Work(imgs)
writer.add_images("output",output,step)
step = step + 1
writer.close()
结果:
4.3、Conv2d+MaxPool2d图像
代码:
import torch
import torchvision
from torch.nn import Module,MaxPool2d,Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class ConNet(Module):
def __init__(self):
super(ConNet, self).__init__()
# 池化层使用,设置卷积核为3*3,超出的部分保留数据
self.maxpool = MaxPool2d(kernel_size=3,ceil_mode=True)
self.conv2d = Conv2d(in_channels=3,out_channels=3,kernel_size=3,stride=1,padding=0)
def forward(self,input):
output = self.conv2d(input)
output = self.maxpool(output)
return output
# 实例化对象
Work = ConNet()
# CIFAR10数据使用
dataset = torchvision.datasets.CIFAR10("./datasetvision",train=False,download=False,transform=torchvision.transforms.ToTensor())
# 数据加载
dataloader = DataLoader(dataset,batch_size=64)
writer = SummaryWriter("logs_MaxPoolAndConv2d")
step = 0
for data in dataloader:
imgs,target = data
writer.add_images("input",imgs,step)
output = Work(imgs)
writer.add_images("output",output,step)
step = step + 1
writer.close()
结果:
边栏推荐
- 项目管理到底管的是什么?
- 唯一性索引与逻辑删除冲突问题解决思路
- 【Android,Kotlin,TFLite】移动设备集成深度学习轻模型TFlite(物体检测篇)
- 深入解析 Apache BookKeeper 系列:第四篇—背压
- KubeVela 1.4:让应用交付更安全、上手更简单、过程更透明
- Doker's container data volume
- Two dots on the top of the latex letter
- Where can I find the computer version of wechat files
- 206页上海BIM技术应用与发展报告2021
- AtCoder Beginner Contest 255
猜你喜欢
深入解析 Apache BookKeeper 系列:第四篇—背压
The Sandbox 正在 Polygon 网络上进行部署
ESP8266 成为客户端和服务器
Ride: get picture Base64
Doker的容器数据卷
JMeter cross thread parameter association requires no script
“飞桨+辨影相机”成为AI界的“预制菜”,工业AI质检落地更简单
[fundamentals of wireless communication-13]: illustrated mobile communication technology and application development-1-overview
Deployment of microservices based on kubernetes platform
HP 惠普笔记本电脑 禁用触摸板 在插入鼠标后
随机推荐
Swift5.0 ----Swift FrameWork的创建及使用
Kubevela 1.4: make application delivery safer, easier to use, and more transparent
Qt笔记(七十四)之QLineEdit指定输入类型
What if the taskbar is blank after win11 update? Solution to blank and stuck taskbar after win11 update
msf之ms17-010永恒之蓝漏洞
"More Ford, more China" saw through the clouds, and the orders of Changan Ford's flagship products exceeded 10000
后疫情时代,云计算如何为在线教育保驾护航
Discuz forum speed up to delete XXX under data/log PHP file
Nansen double disk encryption giant self rescue: how to prevent the collapse of billions of dominoes
What does the software test report contain? How to obtain high quality software test reports?
电商秒杀系统
CesiumJS 2022^ 源码解读[6] - 三维模型(ModelExperimental)新架构
The sandbox is being deployed on the polygon network
Fastjson V2 简单使用手册
深入解析 Apache BookKeeper 系列:第四篇—背压
The Sandbox 正在 Polygon 网络上进行部署
Where can I find the computer device manager
CTFSHOW框架复现篇
Fastjson V2 simple user manual
Introduction to machine learning compilation course learning notes lesson 2 tensor program abstraction