当前位置:网站首页>HDU 6440 2018中国大学生程序设计网络选拔赛
HDU 6440 2018中国大学生程序设计网络选拔赛
2022-07-04 17:59:00 【相思明月楼】
Problem Description
Freshmen frequently make an error in computing the power of a sum of real numbers, which usually origins from an incorrect equation (m+n)p=mp+np, where m,n,p are real numbers. Let's call it ``Beginner's Dream''.
For instance, (1+4)2=52=25, but 12+42=17≠25. Moreover, 9+16−−−−−√=25−−√=5, which does not equal 3+4=7.
Fortunately, in some cases when p is a prime, the identity
(m+n)p=mp+np
holds true for every pair of non-negative integers m,n which are less than p, with appropriate definitions of addition and multiplication.
You are required to redefine the rules of addition and multiplication so as to make the beginner's dream realized.
Specifically, you need to create your custom addition and multiplication, so that when making calculation with your rules the equation (m+n)p=mp+np is a valid identity for all non-negative integers m,n less than p. Power is defined as
ap={1,ap−1⋅a,p=0p>0
Obviously there exists an extremely simple solution that makes all operation just produce zero. So an extra constraint should be satisfied that there exists an integer q(0<q<p) to make the set {qk|0<k<p,k∈Z} equal to {k|0<k<p,k∈Z}. What's more, the set of non-negative integers less than p ought to be closed under the operation of your definitions.
Hint
Hint for sample input and output:
From the table we get 0+1=1, and thus (0+1)2=12=1⋅1=1. On the other hand, 02=0⋅0=0, 12=1⋅1=1, 02+12=0+1=1.
They are the same.
Input
The first line of the input contains an positive integer T(T≤30) indicating the number of test cases.
For every case, there is only one line contains an integer p(p<210), described in the problem description above. p is guranteed to be a prime.
Output
For each test case, you should print 2p lines of p integers.
The j-th(1≤j≤p) integer of i-th(1≤i≤p) line denotes the value of (i−1)+(j−1). The j-th(1≤j≤p) integer of (p+i)-th(1≤i≤p) line denotes the value of (i−1)⋅(j−1).
Sample Input
1
2
Sample Output
0 1
1 0
0 0
0 1
#include <iostream>
#include <stdio.h>
using namespace std;
int main() {
int t, p;
scanf("%d", &t);
while(t--) {
scanf("%d", &p);
for(int i = 1; i <= p; i++) {
for(int j = 1; j <= p; j++) {
j==p?printf("%d\n", ((i-1)+(j-1))%p):printf("%d ", ((i-1)+(j-1))%p);
}
}
for(int i = 1; i <= p; i++) {
for(int j = 1; j <= p; j++) {
j==p?printf("%d\n", ((i-1)*(j-1))%p):printf("%d ", ((i-1)*(j-1))%p);
}
}
}
return 0;
}
边栏推荐
- YOLOv5s-ShuffleNetV2
- 如何使用Async-Awati异步任务处理代替BackgroundWorker?
- mysql中explain语句查询sql是否走索引,extra中的几种类型整理汇总
- 关于判断点是否位于轮廓内的一点思考
- 从实时应用角度谈通信总线仲裁机制和网络流控
- 自由小兵儿
- Go微服务(二)——Protobuf详细入门
- The CDC of sqlserver can read the data for the first time, but it can't read the data after adding, deleting and modifying. What's the reason
- Comment utiliser async awati asynchrone Task Handling au lieu de backgroundworker?
- Safer, smarter and more refined, Chang'an Lumin Wanmei Hongguang Mini EV?
猜你喜欢

读写关闭的channel是啥后果?

Build your own website (15)

Opencv functions and methods related to binary threshold processing are summarized for comparison and use

联想首次详解绿色智城数字孪生平台 破解城市双碳升级难点

Lm10 cosine wave homeopathic grid strategy

A method of using tree LSTM reinforcement learning for connection sequence selection

如何使用Async-Awati异步任务处理代替BackgroundWorker?

千万不要只学 Oracle、MySQL!

PolyFit软件介绍

升级智能开关,“零火版”、“单火”接线方式差异有多大?
随机推荐
用实际例子详细探究OpenCV的轮廓绘制函数drawContours()
Nebula importer data import practice
PointNeXt:通过改进的模型训练和缩放策略审视PointNet++
Other InterSystems%net tools
SSL证书续费相关问题详解
英特尔集成光电研究最新进展推动共封装光学和光互连技术进步
FPGA时序约束分享01_四大步骤简述
大div中有多个div,这些div在同一行显示,溢出后产生滚动条而不换行
Send and receive IBM WebSphere MQ messages
Is the securities account opened by qiniu safe?
使用canal配合rocketmq监听mysql的binlog日志
1011 World Cup Betting (20 分)(PAT甲级)
Hough transform Hough transform principle
HDU 1372 & POJ 2243 Knight Moves(广度优先搜索)
神经网络物联网应用技术就业前景【欢迎补充】
Is Guoyuan futures a regular platform? Is it safe to open an account in Guoyuan futures?
Pytest 可视化测试报告之 Allure
【问题】druid报异常sql injection violation, part alway true condition not allow 解决方案
生成XML元素
性能优化之关键渲染路径