当前位置:网站首页>FPGA时序约束分享01_四大步骤简述
FPGA时序约束分享01_四大步骤简述
2022-07-04 17:50:00 【MDYFPGA】
本文为明德扬原创文章,转载请注明出处!
本文章探讨一下FPGA的时序约束步骤,本文章内容,来源于配置的明德扬时序约束专题课视频。
时序约束是一个非常重要的内容,而且内容比较多,比较杂。因此,很多读者对于怎么进行约束,约束的步骤过程有哪些等,不是很清楚。明德扬根据以往项目的经验,把时序约束的步骤,概括分成四大步,分别是时钟的约束、input delays的约束、output delays的约束和时序例外。
时序约束是有先后的,首先要做时钟约束、其次是input delays约束、再次是output delays约束,最后才是时序例外的约束。这是一个完整的大步骤,也就是说我们在项目开始阶段就可以约束我们的时钟,把我们时钟的频率、周期、来源等等定义好。这一步做完之后,先不要做二三四步。这时候我们要完成我们的设计,要把我们内部的时序都完成之后才做第二步设置“input delays”,比如说我们从外部进来的一个情况。第三步output delays,也就是说要往下游器件发送的一个时序情况。当这一二三步都做完之后,我们在最后项目的阶段才做一个时序例外的情况。时序例外也就是说哪些时序是不需要分析的,这种情况要设置好。最后我们才能把整个时序约束完成。
以上是大的步骤,但事实上每一个步骤又可以细分成很多种情况。例如时钟约束,时钟可以分很多种,一种是差分时钟,一种是管脚进来的时钟、还有我们PLL产生时钟等等。还有一种是有数据但没有时钟的情况。input delays、output delays 也有很多种,我们到底要怎么样去分析,怎么去看。明德扬就把这四个步骤再进行细化,就是根据情况来分别列出来。
下面分别展开描述。
第1节 时钟
时钟约束可以分成很多种情况,不同的情况就有不同的约束方法,一般有哪几种情况呢?
如上图,时钟约束概括地,可以分成三种情况,分别是输入时钟、PLL等衍生时钟以及自己分步的时钟。
1.1 输入时钟
输入时钟是指时钟从FPGA管脚进来的情形,这也是最常见的情况。根据输入的管脚的不同,输入时钟情况又可以分成:输入管脚是单端的、输入管脚是差分的,以及GT或者恢复时钟三种情况。
第一种:输入管脚是单端的,即时钟直接从管脚进来、并且是单端信号。例如普通低速晶振,大部分是这种情况,明德扬的FPGA ALTERA学习板,如MP801、MP603,其时钟均是由晶振产生,送到FPGA,并且是单端的信号。
第二种:输入管脚是差分的,即时钟直接从管脚进来,并且是差分信号。大部分高速晶振、LVDS接口等,属于此情形。例如明德扬FPGA XILINX学习板,如MP802,其包含了PCIE管脚,其输入的时钟就是差分的;这个板子的DDR的驱动时钟,时钟频率在200M左右,也是属于此种以情形。
第三种:GT或者恢复时钟,即使用了高速收发器的情形。在高速收发器管脚中,是没有时钟的,时钟已经嵌入到数据里面,使用FPGA的GTX IP核接收数据,并且从数据恢复出时钟。这个恢复出来的时钟就是此种情形。最常见的就是光纤接口。
1.2 PLL等衍生时钟
那假如说我不是输入管脚,而是PLL产生的输出时钟,这个 就是PLL等衍生时钟。这种时钟,FPGA的工具,会自行推导,一般无需约束,但实质应用中,强烈建议约束,会有好处的,好处在下一篇文章中说明。
1.3 自己分频的时钟
还有一种情况是自己分频的时钟,假如说我们自己写了一个计数器,把它二分频、四分频、八分频等,分频出来的信号当为时钟,这种情况就是自己分频的时钟。
首先说明,明德扬不推荐使用此方法来产生时钟。但确实要用到分频时钟时,那就要记得做时钟约束。这种情况下要怎么进行约束呢?
以上概括了说明了时钟的几种情况,每种情况下,其约束方法都有些不同以及注意点。具体约束方法,可以看后续文章的内容。
第2节 input delays
input delay约束,即输入延时约束,是时序约束的重点,input delay 又分几种呢?
如上图,input delay约束概括地,可以分成三种情况,分别是系统同步、源同步和有数据无时钟。
2.1 系统同步
第一个是系统同步方式,也就是说整个电路板上FPGA以及上游器件都共用一个时钟,并且相位严格相同,这个就是系统同步的方式。
2.2 源同步
第二种是源同步的方式,源同步是怎么样?就是上游器件,把数据和时钟信号一起送到FPGA上来的,那这种就是源同步。
源同步是更常用的一种方式,系统同步比较少用,为什么呢?因为要做到上游器件跟FPGA的相位差为0,没有一点时钟差,这种要求非常高。而源同步是数据跟时钟都是从上游器件一起输送过来给FPGA,这是一种更常用的方式。
这个源同步,又有很多种,具体SDR、DDR和有数据无时钟三种情况。
第一种:SDR。SDR是指时钟是单沿有效的方式,比如说我只用上升延或者下降延的一个方式,SDR约束的参数,其获取的方法有两种:查看上游器件手册(通过查看上游器的数据手册,获取参数)以及通过示波器测量(通过示波器测量信号的相位差,获取参数)。
第二种:DDR。DDR是另一种方式,它是一种时钟双沿有效的一个方式。也就说即用它的上升延,也用它的下降延。例如说我们的DDR2、DDR3的时钟,都是上下降沿一直采数据的;包括千兆网的RGMII接口,也是通过双沿的方式。
DDR的这种情况,我们还可以继续划分成中心对齐和边沿对齐两种情况。
中心对齐是指:时钟边沿始终在数据的中间,时钟上升沿的左右两边,数据都是稳定的。边沿对齐是指:时钟和数据边沿对齐的,在时钟变化沿两边,其数据是不稳定的。
第三种:有数据无时钟。第三种就是有数据无时钟的情况。例如说常见的串口。串口是直接数据过来的,它是没有随路时钟过来的。而我们用本地时钟去采样,就会出现有数据无时钟。那对于这种我们应该怎么去约束,又是另一种情况。
第3节 output delays
输出延时约束和输入延时一样,也是约束的重点。output delay 我们主要分两种,系统同步和源同步。
3.1 系统同步
整个电路板上FPGA以及下游器件都共用一个时钟,并且相位严格相同,这个就是系统同步的方式。此时FPGA往下游器件发送数据,这时候只传送数据线就可以了。而时钟跟FPGA共用一个的,不需要传时钟。
3.2 源同步
源同步就是FPGA往这个器件发数据,在发数据过程中也发一个时钟过去,这是一个随路时钟的一个方式,是源同步。
源同步我们还分SDR和DDR。
第一种:SDR。SDR是指时钟是单沿有效的方式,比如说我只用上升延或者下降延的一个方式,SDR约束的参数,其获取的方法有两种:查看上游器件手册(通过查看上游器的数据手册,获取参数)以及通过示波器测量(通过示波器测量信号的相位差,获取参数)。示波器测量比较少用。
第二种:DDR。DDR是另一种方式,它是一种时钟双沿有效的一个方式。也就说即用它的上升延,也用它的下降延。例如说我们的DDR2、DDR3的时钟,都是上下降沿一直采数据的;包括千兆网的RGMII接口,也是通过双沿的方式。
DDR的这种情况,我们还可以继续划分成中心对齐和边沿对齐两种情况。
中心对齐是指:时钟边沿始终在数据的中间,时钟上升沿的左右两边,数据都是稳定的。边沿对齐是指:时钟和数据边沿对齐的,在时钟变化沿两边,其数据是不稳定的。
第4节 时序例外
时序例外一般用在clock与IO都约束后,还是不满足时序要求的情况下。主要包括多周期路径、不需要检查的路径和组合电路延时等三种情况,如下图。
4.1 多周期路径
多周期路径是指完成一个运算需要超过1个时钟周期的情形,多周期路径在IC设计领域运用较多,但在FPGA里应用较少。
4.2 不需要检查的路径
有一些路径是不需要分析的,具体可以分成三种:常量或伪常量信号、互斥路径和异步时钟。
第一种:常量或伪常量信号。某些信号虽然不满足时序要求,但实质上该信号在应用场景中,是不会改变的,例如某个开关信号,它在上电时打开后,就一直保持打开状态,不会变来变去。那么这个信号就可以认为是伪常量信号。假设它不满足时序要求,也是无所谓的,因为不会变,不会变就意味着建立时间和保持时间肯定满足,所以不存在问题。这种信号是不需要检查 的。
第二种:互斥的路径。可以简单认为是双向端口,即代码中,使用inout定义的信号。
第三种:异步时钟。即信号从一个时钟域,跨到另一个时钟域的情况。这也是不需要检查 的。注意,这里说不用检查,是指完成异步信号同步化后,不用检查的意思。
4.3 组合电路延时
还有一种是组合电路的延时。组合电路延时就是说我从这个管脚到另一个管脚之间,另一个管脚进来,这个管脚出去中间没有任何一个时钟,这是组合电路给延时的一种情况。
第5节 总结与建议
前面我们讲了时钟约束、输入延时、输出延时还时序例外的情况。每一种情况又分了很多种,根据它的不同类型来区分,每次约束的时候都是其中的一种情况。比如说CLK差分,就去找时钟,然后根据差分管脚怎么约束,来找到对应情况,按照要求进行约束。这相当于我已经提供一个表给你,你按照这个表去核对。找到对应的情况,按要求进行约束就可以了。
记住:开始的时候,只是配置时钟,不配置input delay 、 output delays和持续例外。因为我们开始的时候是专心于内部电路,我们时序的一个设计,满足内部要求之后,再去配置我们的接口。在时钟完全通过之后再配置input delay 和output delays 。
时序例外是最后差不多要完工了再进行配置的。而且这个配置是要很小心。因为我们实际例外,比如说不用检查,我们set false path这种情况,设置好就是表示不用检查。如果在开始的时候,就设置好了,万一中间又要改变,你改变的话,那你忘了把这个约束给干掉了,这种情况就会出现有错误也提示不出来的情况。所以说时序例外应该是最后情况下进行的。
这个顺序是明德扬经验的一个顺序,我们的项目基本上是按照这个顺序做的。但是不同的公司也会有不同的做法。例如说我一开始全部都不约束,到最后再生约束,这也是可以的。这种做法没有统一标准,反正学明德扬的课程,你就按这个步骤做,去到其他公司,再根据公司要求去做就可以了。
本文章是基于赛灵思的一个时序约束,ALTERA也是相似的,甚至IC芯片设计领域,也是同样的思路。
有句话讲的很好,我们的时序是设计出来的,不是约束出来的。所以说时序重要还是不重要?当然重要。但是它不是非常重要,更重要的是假如说我时序出现例外,不满足的时候,更重要是改变你的设计,而不是要求约束。
下一篇文章,我们将具体探讨“时钟约束”的内容,讲解各种情况下的时序约束方法。需要更多更详细的资料和原文档的,可以找作者了解和领取。
明德扬(MDY)除了培训课程外,还可为客户提供承接项目、FPGA芯片、电源芯片、AD芯片等元器件,可找我们了解。18922344178(电话微信同步)
边栏推荐
猜你喜欢
DeFi生态NFT流动性挖矿系统开发搭建
神经网络物联网平台搭建(物联网平台搭建实战教程)
千万不要只学 Oracle、MySQL!
整理混乱的头文件,我用include what you use
Use canal and rocketmq to listen to MySQL binlog logs
Learning path PHP -- phpstudy "hosts file does not exist or is blocked from opening" when creating the project
自由小兵儿
Nebula importer data import practice
The latest progress of Intel Integrated Optoelectronics Research promotes the progress of CO packaging optics and optical interconnection technology
关于判断点是否位于轮廓内的一点思考
随机推荐
Build your own website (15)
Esp32-c3 introductory tutorial questions ⑫ - undefined reference to ROM_ temp_ to_ power, in function phy_ get_ romfunc_ addr
【OpenCV入门到精通之九】OpenCV之视频截取、图片与视频互转
Unity editor extends C to traverse all pictures in folders and subdirectories
[mathematical basis of machine learning] (I) linear algebra (Part 1 +)
1672. Total assets of the richest customers
Using SSH
Shell 編程核心技術《四》
使用canal配合rocketmq监听mysql的binlog日志
redis分布式锁的8大坑总结梳理
Perfect JS event delegation
模板_判断素数_开方 / 六素数法
Send and receive IBM WebSphere MQ messages
与二值化阈值处理相关的OpenCV函数、方法汇总,便于对比和拿来使用
php伪原创api对接方法
Caché WebSocket
876. Intermediate node of linked list
LeetCode FizzBuzz C#解答
1672. 最富有客户的资产总量
The 15th youth informatics competition in Shushan District in 2019