当前位置:网站首页>Introduction to Cosine Distance
Introduction to Cosine Distance
2022-08-03 19:11:00 【xiaozheng123121】
目录
作者:CSDN博主「深度学习视觉」
原文链接:https://blog.csdn.net/lucky_kai/article/details/89514868
————————————————
概述: 在机器学习领域中,通常将特征表示为向量的形式,所以在分析两个特征向量之间的相似性时,Commonly used cosine similarity representation.
For example, two articles are vectorized,Cosine distance can avoid large distances due to different lengths of articles,The cosine distance only considers the angle between the vectors generated by the two articles.
余弦相似度的取值范围是[-1,1],相同两个向量的之间的相似度为1.
余弦距离的取值范围是[0,2].
The definition formula of cosine similarity is c o s ( A , B ) = A ⋅ B ∥ A ∥ 2 ∥ B ∥ 2 cos(A,B)=\frac{A\cdot B}{\left\|A \right\|_2\left\|B \right\|_2} cos(A,B)=∥A∥2∥B∥2A⋅B
归一化后: ∥ A ∥ 2 = 1 , ∥ B ∥ 2 = 1 , ∥ A ∥ 2 ∥ B ∥ 2 = 1 \left\|A\right\|_2=1, \left\|B\right\|_2=1, \left\|A\right\|_2\left\|B\right\|_2=1 ∥A∥2=1,∥B∥2=1,∥A∥2∥B∥2=1
余弦距离: d i s t ( A , B ) = 1 − c o s ( A , B ) = ∥ A ∥ 2 ∥ B ∥ 2 − A ⋅ B ∥ A ∥ 2 ∥ B ∥ 2 dist(A,B)=1-cos(A,B)=\frac{\left\|A \right\|_2\left\|B \right\|_2-A\cdot B}{\left\|A \right\|_2\left\|B \right\|_2} dist(A,B)=1−cos(A,B)=∥A∥2∥B∥2∥A∥2∥B∥2−A⋅B,distance is greater than0
欧式距离:
It can be seen from the formula that after normalization,There is a monotonic relationship between Euclidean distance and cosine distance.At this time, the value range of both distances is [0,2].
Euclidean distance vs cosine distance:
1.欧式距离的数值受到维度的影响,余弦相似度在高维的情况下也依然保持低维完全相同时相似度为1等性质.
2.欧式距离体现的是距离上的绝对差异,The cosine distance reflects the relative difference in direction.
边栏推荐
- Alibaba senior experts create a learning architecture from scratch, including Alibaba's internal technology stack PPT, PFD actual combat
- Postgresql中的pg_memory_barrier_impl和C的volatile
- The addition and subtraction of the score of the force deduction brush question (a daily question 7/27)
- Web项目中简单使用线程池
- MySQL 主从,6 分钟带你掌握!
- Difference差分数组
- docker mysql 容器中执行mysql脚本文件并解决乱码
- 七夕之前,终于整出了带AI的美丽秘笈
- Shell编程之循环语句
- Bytes to beat three sides take offer: network + GC + + IO + redis + JVM red-black tree + data structure, to help you quickly into the giant!!!!!
猜你喜欢
随机推荐
C#爬虫之通过Selenium获取浏览器请求响应结果
机器学习的方法总结
力扣解法汇总899-有序队列
APT级全面免杀与企业纵深防御体系的红蓝对抗
Postgresql-xl global snapshot and GTM code walking (branch line)
金鱼哥RHCA回忆录:CL210管理计算资源--管理计算节点+章节实验
【计网】二、物理层
Postgresql快照优化Globalvis新体系分析(性能大幅增强)
MD5是对称加密还是非对称加密,有什么优缺点
2022年最新的Android面试大厂必考174题(附带详细答案)
Matlab论文插图绘制模板第42期—气泡矩阵图(相关系数矩阵图)
WEB 渗透之RCE
MySQL基础
ctfshow php特性
LineSegmentTree线段树
mysql跨库关联查询(dblink)
力扣刷题之求两数之和
阿里巴巴政委体系-第六章、阿里政委体系运作
如何理解即时通讯开发移动网络的“弱”和“慢”
Rust:多线程并发编程









