当前位置:网站首页>Thesis understanding: "Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution, Denoising, and "
Thesis understanding: "Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution, Denoising, and "
2022-08-02 07:54:00 【RrS_G】
译:A general framework for cross-scale residual networks
-- IEEE TRANSACTIONS ON CYBERNETICS -- 2020
目录
A、Shallow feature extraction stage
B、Hierarchical feature fusion stage
三、Cross-scale residual blocks(CSRB)
一、引言
一般来说,The purpose of image recovery is from corrupted observationsx = H(Y) + vto restore a clean imagey,其中Y是y的ground-truthHigh quality version,His a degenerate function,v是加性噪声.By adapting to different types of degradation functions,The resulting mathematical model is specific to the image restoration task,如图像超分辨率、Denoising and deblocking.
The authors hope that the image restoration network can well support the above three tasks.But most existing models can only perform well on one of these tasks.总的来说,All of these tasks have a common feature:Aims to generate visually pleasing high-quality images from low-quality images.So these tasks happen to be strongly correlated,The author thought of designing a common framework to support all tasks,Therefore, a cross-scale residual network is proposed(CSRnet).
二、网络框架
The network proposed in this paperCSRnet包括三个阶段:Shallow feature extraction stage,Hierarchical feature fusion stage,重建阶段.
They are respectively responsible for extracting shallow image features,利用提出的CSRBRich feature maps in ,as well as adding image details.CSRnet的输入和输出分别为x和y.结构图如下:

A、Shallow feature extraction stage
Extract shallow features from low-quality input images using two convolutional layers.The first convolutional layer performs feature extraction on the input image,The second convolutional layer performs dimensionality reduction on the features.The shallow feature extraction stage can be expressed as

其中
Represents the first convolution operation,卷积核大小为7x7.Using a large convolution kernel can produce a large receptive field.
Represents the second convolution operation,卷积核大小为3×3.Connect by jumping,
It is further used for residual learning in the reconstruction stage,
作为第一个CSRB的输入.
B、Hierarchical feature fusion stage
This stage has multiple of the same structureCSRBto learn about layering properties.如果D个CSRB全采用inter-block connection的方式进行堆叠,Then this stage is represented as :

C、重建阶段
To further improve information flow and reconstruct image details,This stage contains one skip connection and two convolutional layers,表示为

优化目标为

三、Cross-scale residual blocks(CSRB)
To determine image features at different scales,作者提出了CSRB作为CSRnet的关键组成部分.CSRBTake three branches using different sizes(即1x、1/2x和1/4x),to support the use of cross-scale features.如图2所示,具体如下:

图2Boxes with different colored borders in , represent state designs at different scales.带黑色、Boxes with purple and yellow borders represent respectivelys = 0、2和4state at scale.sThe value of represents the scale of downsampling,即1x、1/2和1/4.
第d个CSRBThe total input is (三个尺度):

第d次CSRB中不同尺度s = 0,2,4的输出可以表示为:

其中:



四、实验结果
Below is the denoising result: 
边栏推荐
- 有关 sql中的 concat()函数问题,如何拼接
- (2022牛客多校五)C-Bit Transmission(思维)
- LeetCode 2360. The longest cycle in a graph
- 在VMware上安装Metasploitable2
- Agile, DevOps and Embedded Systems Testing
- Splunk Filed Alias field name
- Go implements distributed locks
- 反射课后习题及做题记录
- CollectionUtil: a collection of functional style tool
- MySQL-索引详解
猜你喜欢

MySQL - Index Optimization and Query Optimization

你认同这个观点吗?大多数企业的数字化都只是为了缓解焦虑
![MySQL error 1055 solution: [Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause and contains](/img/aa/ab58ec47bb96df803dbc6a8ff6dde3.png)
MySQL error 1055 solution: [Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause and contains

MySQL-慢查询日志

自然语言处理 文本预处理(上)(分词、词性标注、命名实体识别等)

Splunk Filed extraction 字段截取

Splunk Field Caculated Calculated Field

A Preliminary Study on the Basic Principles of Formal Methods

Splunk Filed Alias field name

MySQL-执行流程+缓存+存储引擎
随机推荐
自然语言处理 文本预处理(上)(分词、词性标注、命名实体识别等)
jvm 二之 栈帧内部结构
LeetCode 2360. The longest cycle in a graph
LeetCode 283. Shifting Zeros (Simple, Array)
有趣的网站
新产品立大功 伟世通第二季度营收双增
【机器学习】实验6布置:基于集成学习的Amazon用户评论质量预测
Link with Game Glitch
自然语言处理 文本预处理(下)(张量表示、文本数据分析、文本特征处理等)
Splunk Field Caculated 计算字段
请教一下,Flink SQL ,JDBC sink 入 mysql 库,想要搞一个自增主键,要怎么写
使用hutool做本地缓存的工具类
图腾柱和推挽电路介绍
LeetCode brush questions (7)
【ROS基础】map、odom、base_link、laser 的理解 及其 tf 树的理解
Azure Synapse Analytics上创建用户并赋予权限
吃透Chisel语言.31.Chisel进阶之通信状态机(三)——Ready-Valid接口:定义、时序和Chisel中的实现
A full review of mainstream timed task solutions
查看端口号占用
MySQL-Multiversion Concurrency Control