当前位置:网站首页>Thesis understanding: "Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution, Denoising, and "
Thesis understanding: "Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution, Denoising, and "
2022-08-02 07:54:00 【RrS_G】
译:A general framework for cross-scale residual networks
-- IEEE TRANSACTIONS ON CYBERNETICS -- 2020
目录
A、Shallow feature extraction stage
B、Hierarchical feature fusion stage
三、Cross-scale residual blocks(CSRB)
一、引言
一般来说,The purpose of image recovery is from corrupted observationsx = H(Y) + vto restore a clean imagey,其中Y是y的ground-truthHigh quality version,His a degenerate function,v是加性噪声.By adapting to different types of degradation functions,The resulting mathematical model is specific to the image restoration task,如图像超分辨率、Denoising and deblocking.
The authors hope that the image restoration network can well support the above three tasks.But most existing models can only perform well on one of these tasks.总的来说,All of these tasks have a common feature:Aims to generate visually pleasing high-quality images from low-quality images.So these tasks happen to be strongly correlated,The author thought of designing a common framework to support all tasks,Therefore, a cross-scale residual network is proposed(CSRnet).
二、网络框架
The network proposed in this paperCSRnet包括三个阶段:Shallow feature extraction stage,Hierarchical feature fusion stage,重建阶段.
They are respectively responsible for extracting shallow image features,利用提出的CSRBRich feature maps in ,as well as adding image details.CSRnet的输入和输出分别为x和y.结构图如下:

A、Shallow feature extraction stage
Extract shallow features from low-quality input images using two convolutional layers.The first convolutional layer performs feature extraction on the input image,The second convolutional layer performs dimensionality reduction on the features.The shallow feature extraction stage can be expressed as

其中
Represents the first convolution operation,卷积核大小为7x7.Using a large convolution kernel can produce a large receptive field.
Represents the second convolution operation,卷积核大小为3×3.Connect by jumping,
It is further used for residual learning in the reconstruction stage,
作为第一个CSRB的输入.
B、Hierarchical feature fusion stage
This stage has multiple of the same structureCSRBto learn about layering properties.如果D个CSRB全采用inter-block connection的方式进行堆叠,Then this stage is represented as :

C、重建阶段
To further improve information flow and reconstruct image details,This stage contains one skip connection and two convolutional layers,表示为

优化目标为

三、Cross-scale residual blocks(CSRB)
To determine image features at different scales,作者提出了CSRB作为CSRnet的关键组成部分.CSRBTake three branches using different sizes(即1x、1/2x和1/4x),to support the use of cross-scale features.如图2所示,具体如下:

图2Boxes with different colored borders in , represent state designs at different scales.带黑色、Boxes with purple and yellow borders represent respectivelys = 0、2和4state at scale.sThe value of represents the scale of downsampling,即1x、1/2和1/4.
第d个CSRBThe total input is (三个尺度):

第d次CSRB中不同尺度s = 0,2,4的输出可以表示为:

其中:



四、实验结果
Below is the denoising result: 
边栏推荐
- Splunk Field Caculated 计算字段
- CollectionUtil:一个函数式风格的集合工具
- OC-NSString
- redis-高级篇
- Compact格式下MySQL的数据如何存储到磁盘
- A full review of mainstream timed task solutions
- 查看端口号占用
- 吃透Chisel语言.30.Chisel进阶之通信状态机(二)——FSMD:以Popcount为例
- 59:第五章:开发admin管理服务:12:MongoDB的使用场景;(非核心数据,数据量比较大的非核心数据,人脸照片等隐私的小文件;)
- (2022牛客多校五)D-Birds in the tree(树形DP)
猜你喜欢
随机推荐
Modify apt-get source to domestic mirror source
飞桨paddle技术点整理
正则表达式
【心电信号】基于matlab心率检测【含Matlab源码 1993期】
Go 实现分布式锁
倍福使用AdsRemote组件实现和C#的ADS通讯
OC-error prompt
OC-NSNumber and NSValue are generally used for boxing and unboxing
Compact格式下MySQL的数据如何存储到磁盘
我与csdn
吃透Chisel语言.31.Chisel进阶之通信状态机(三)——Ready-Valid接口:定义、时序和Chisel中的实现
MySQL-FlinkCDC-Hudi实时入湖
根据一个字段的内容去更新另一个字段的数据,这样的sql语句该怎么样书写
apt & apt-get命令
【机器学习】实验4布置:AAAI会议论文聚类分析
Mysql报错2003 解决办法 Can‘t connect to MySQL server on ‘localhost‘ (10061)
SQL server 2014 怎么一次性导出多个查询结果?
hdu1752 copy
pnpm install出现:ERR_PNPM_PEER_DEP_ISSUES Unmet peer dependencies
A Preliminary Study on the Basic Principles of Formal Methods









