当前位置:网站首页>Thesis understanding: "Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution, Denoising, and "
Thesis understanding: "Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution, Denoising, and "
2022-08-02 07:54:00 【RrS_G】
译:A general framework for cross-scale residual networks
-- IEEE TRANSACTIONS ON CYBERNETICS -- 2020
目录
A、Shallow feature extraction stage
B、Hierarchical feature fusion stage
三、Cross-scale residual blocks(CSRB)
一、引言
一般来说,The purpose of image recovery is from corrupted observationsx = H(Y) + vto restore a clean imagey,其中Y是y的ground-truthHigh quality version,His a degenerate function,v是加性噪声.By adapting to different types of degradation functions,The resulting mathematical model is specific to the image restoration task,如图像超分辨率、Denoising and deblocking.
The authors hope that the image restoration network can well support the above three tasks.But most existing models can only perform well on one of these tasks.总的来说,All of these tasks have a common feature:Aims to generate visually pleasing high-quality images from low-quality images.So these tasks happen to be strongly correlated,The author thought of designing a common framework to support all tasks,Therefore, a cross-scale residual network is proposed(CSRnet).
二、网络框架
The network proposed in this paperCSRnet包括三个阶段:Shallow feature extraction stage,Hierarchical feature fusion stage,重建阶段.
They are respectively responsible for extracting shallow image features,利用提出的CSRBRich feature maps in ,as well as adding image details.CSRnet的输入和输出分别为x和y.结构图如下:
A、Shallow feature extraction stage
Extract shallow features from low-quality input images using two convolutional layers.The first convolutional layer performs feature extraction on the input image,The second convolutional layer performs dimensionality reduction on the features.The shallow feature extraction stage can be expressed as
其中Represents the first convolution operation,卷积核大小为7x7.Using a large convolution kernel can produce a large receptive field.
Represents the second convolution operation,卷积核大小为3×3.Connect by jumping,
It is further used for residual learning in the reconstruction stage,
作为第一个CSRB的输入.
B、Hierarchical feature fusion stage
This stage has multiple of the same structureCSRBto learn about layering properties.如果D个CSRB全采用inter-block connection的方式进行堆叠,Then this stage is represented as :
C、重建阶段
To further improve information flow and reconstruct image details,This stage contains one skip connection and two convolutional layers,表示为
优化目标为
三、Cross-scale residual blocks(CSRB)
To determine image features at different scales,作者提出了CSRB作为CSRnet的关键组成部分.CSRBTake three branches using different sizes(即1x、1/2x和1/4x),to support the use of cross-scale features.如图2所示,具体如下:
图2Boxes with different colored borders in , represent state designs at different scales.带黑色、Boxes with purple and yellow borders represent respectivelys = 0、2和4state at scale.sThe value of represents the scale of downsampling,即1x、1/2和1/4.
第d个CSRBThe total input is (三个尺度):
第d次CSRB中不同尺度s = 0,2,4的输出可以表示为:
其中:
四、实验结果
Below is the denoising result:
边栏推荐
猜你喜欢
Gradle系列——Gradle插件(基于Gradle文档7.5)day3-2
自然语言处理 文本预处理(下)(张量表示、文本数据分析、文本特征处理等)
Splunk Field Caculated Calculated Field
MySQL-执行流程+缓存+存储引擎
【CNN回归预测】基于matlab卷积神经网络CNN数据回归预测【含Matlab源码 2003期】
C#重点问题之Struct和Class的异同
责任链模式(Chain Of Responsibility)
(2022牛客多校五)D-Birds in the tree(树形DP)
企业实训复现指导手册——基于华为ModelArts平台的OpenPose模型的训练和推理、基于关键点数据实现对攀爬和翻越护栏两种行为的识别、并完成在图片中只标注发生行为的人
MySQL-FlinkCDC-Hudi实时入湖
随机推荐
OC-NSDictionary
Link with Game Glitch(spfa判负环)
替换ptmalloc,使用tcmalloc和jemalloc
Find the largest n files
sql 远程访问链接服务器
How to export multiple query results at once in SQL server 2014?
LeetCode 2360. The longest cycle in a graph
反射课后习题及做题记录
有关 sql中的 concat()函数问题,如何拼接
Modify apt-get source to domestic mirror source
59:第五章:开发admin管理服务:12:MongoDB的使用场景;(非核心数据,数据量比较大的非核心数据,人脸照片等隐私的小文件;)
hdu1752 copy
【图像隐藏】基于matlab混合DWT-HD-SVD数字图像水印方法技术【含Matlab源码 2007期】
CollectionUtil:一个函数式风格的集合工具
概率论与数理统计
Xilinx约束学习笔记—— 时序约束
查看僵尸进程
雷达人体存在感应器方案,智能物联网感知技术,实时感应人体存在
【杂】pip换国内源教程及国内源地址
LeetCode Algorithm 1374. 生成每种字符都是奇数个的字符串