当前位置:网站首页>【九阳神功】2019复旦大学应用统计真题+解析
【九阳神功】2019复旦大学应用统计真题+解析
2022-07-06 09:20:00 【大师兄统计】
真题部分
一、(15分) 甲袋中有 n − 1 n-1 n−1个白球1个黑球, 乙袋中有 n n n个白球, 每次从两袋中各取一球进行交换, 求交换 N N N次后黑球还在甲袋的概率.
二、(15分) f ( x , y ) = A e − ( 2 x + 3 y ) I [ x > 0 , y > 0 ] , f(x, y)=A e^{-(2 x+3 y)} I[x>0, y>0], f(x,y)=Ae−(2x+3y)I[x>0,y>0], 求
(1)(3分) A A A;
(2)(3分) P ( X < 2 , Y < 1 ) P(X<2, Y<1) P(X<2,Y<1);
(3)(3分) X X X的边际密度;
(4)(3分) P ( X < 3 ∣ Y < 1 ) P(X<3 \mid Y<1) P(X<3∣Y<1);
(5)(3分) f ( x ∣ y ) f(x \mid y) f(x∣y).
三、(10分) X 1 , X 2 , X_{1}, X_{2}, X1,X2,i.i.d ∼ N ( μ , σ 2 ) , \sim N\left(\mu, \sigma^{2}\right), ∼N(μ,σ2), 求 E max { X 1 , X 2 } E \max \left\{X_{1}, X_{2}\right\} Emax{ X1,X2}.
四、(20分) E X = 0 , Var ( X ) = σ 2 , E X=0, \operatorname{Var}(X)=\sigma^{2}, EX=0,Var(X)=σ2, 证明对任意 ε > 0 , \varepsilon>0, ε>0, 有
(1)(10分) P ( ∣ X ∣ > ε ) ≤ σ 2 ε 2 P(|X|>\varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}} P(∣X∣>ε)≤ε2σ2;
(2)(10分) P ( X > ε ) ≤ σ 2 σ 2 + ε 2 P(X>\varepsilon) \leq \frac{\sigma^{2}}{\sigma^{2}+\varepsilon^{2}} P(X>ε)≤σ2+ε2σ2.
五、(10分) X 1 , X 2 , i . i . d ∼ N ( 0 , 1 ) , X_{1}, X_{2}, i . i . d \sim N(0,1), X1,X2,i.i.d∼N(0,1), 求 X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 的分布.
六、(20分) X 1 , X 2 , … , X n , i . i . d ∼ N ( μ , σ 2 ) , μ X_{1}, X_{2}, \ldots, X_{n}, i . i . d \sim N\left(\mu, \sigma^{2}\right), \mu X1,X2,…,Xn,i.i.d∼N(μ,σ2),μ 已知, 证明:
(1)(10分) 1 n ∑ i = 1 n ( X i − μ ) 2 \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} n1∑i=1n(Xi−μ)2 是 σ 2 \sigma^{2} σ2 的有效估计;
(2)(10分) 1 n π 2 ∑ i = 1 n ∣ X i − μ ∣ \frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|X_{i}-\mu\right| n12π∑i=1n∣Xi−μ∣ 是 σ \sigma σ 的无偏估计, 但不有效.
七、(20分) 总体的分布函数 F ( x ) F(x) F(x)连续单增, X ( 1 ) , X ( 2 ) , … , X ( n ) X_{(1)}, X_{(2)}, \ldots, X_{(n)} X(1),X(2),…,X(n) 是来自该总体的随机样本的次序统计量, Y i = F ( X ( i ) ) , Y_{i}=F\left(X_{(i)}\right), Yi=F(X(i)), 求
(1)(10分) E Y i , Var ( Y i ) E Y_{i}, \operatorname{Var}\left(Y_{i}\right) EYi,Var(Yi);
(2)(10分) ( Y 1 , Y 2 , … , Y n ) T \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T} (Y1,Y2,…,Yn)T 的协方差矩阵.
八、(20分) 有来自总体 U ( θ , 2 θ ) U(\theta,2\theta) U(θ,2θ)的随机样本 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn, 求 θ \theta θ的矩估计和MLE, 并验证无偏性和相合性.
九、(20分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是来自 N ( μ , 1 ) N(\mu,1) N(μ,1)的随机样本, 考虑假设检验问题 H 0 : μ = 1 v s H 1 : μ = 2 H_0:\mu = 1 \quad \mathrm{vs} \quad H_1:\mu=2 H0:μ=1vsH1:μ=2 给定拒绝域 W = { X ˉ > 1.6 } W=\{\bar{X}>1.6\} W={ Xˉ>1.6}, 回答下述问题:
(1)(10分) 求犯两类错误的概率 α \alpha α, β \beta β;
(2)(10分) 要求第二类错误 β ≤ 0.01 \beta\le0.01 β≤0.01, 求样本量的取值范围.
解析部分
一、(15分) 甲袋中有 n − 1 n-1 n−1个白球1个黑球, 乙袋中有 n n n个白球, 每次从两袋中各取一球进行交换, 求交换 N N N次后黑球还在甲袋的概率.
Solution:
设 p k p_{k} pk 为交换 k k k 次后黑球还在甲袋的概率, 则根据全概率公式,
p k + 1 = p k ⋅ n − 1 n + ( 1 − p k ) ⋅ 1 n = ( 1 − 2 n ) p k + 1 n , p_{k+1}=p_{k} \cdot \frac{n-1}{n}+\left(1-p_{k}\right) \cdot \frac{1}{n}=\left(1-\frac{2}{n}\right) p_{k}+\frac{1}{n}, pk+1=pk⋅nn−1+(1−pk)⋅n1=(1−n2)pk+n1, 故有 p N − 1 2 = ( 1 − 2 n ) ( p N − 1 − 1 2 ) = ⋯ = ( 1 − 2 n ) N ( p 0 − 1 2 ) , p_{N}-\frac{1}{2}=\left(1-\frac{2}{n}\right)\left(p_{N-1}-\frac{1}{2}\right)=\cdots=\left(1-\frac{2}{n}\right)^{N}\left(p_{0}-\frac{1}{2}\right), pN−21=(1−n2)(pN−1−21)=⋯=(1−n2)N(p0−21), 即 p N = 1 2 + 1 2 ( 1 − 2 n ) N . p_{N}=\frac{1}{2}+\frac{1}{2}\left(1-\frac{2}{n}\right)^{N} \text {. } pN=21+21(1−n2)N.
二、(15分) f ( x , y ) = A e − ( 2 x + 3 y ) I [ x > 0 , y > 0 ] , f(x, y)=A e^{-(2 x+3 y)} I[x>0, y>0], f(x,y)=Ae−(2x+3y)I[x>0,y>0], 求
(1)(3分) A A A;
(2)(3分) P ( X < 2 , Y < 1 ) P(X<2, Y<1) P(X<2,Y<1);
(3)(3分) X X X的边际密度;
(4)(3分) P ( X < 3 ∣ Y < 1 ) P(X<3 \mid Y<1) P(X<3∣Y<1);
(5)(3分) f ( x ∣ y ) f(x \mid y) f(x∣y).
Solution:
(1) 由概率的正则性, 1 = ∫ R 2 f ( x , y ) d x d y = A ∫ 0 + ∞ e − 2 x d x ∫ 0 + ∞ e − 3 y d y = A 6 ⇒ A = 6 1=\int_{R^{2}} f(x, y) d x d y=A \int_{0}^{+\infty} e^{-2 x} d x \int_{0}^{+\infty} e^{-3 y} d y=\frac{A}{6} \Rightarrow A=6 1=∫R2f(x,y)dxdy=A∫0+∞e−2xdx∫0+∞e−3ydy=6A⇒A=6.
(2) P ( X < 2 , Y < 1 ) = 6 ∫ 0 2 e − 2 x d x ∫ 0 1 e − 3 y d y = 6 ( 1 − e − 4 ) ( 1 − e − 3 ) P(X<2, Y<1)=6 \int_{0}^{2} e^{-2 x} d x \int_{0}^{1} e^{-3 y} d y=6\left(1-e^{-4}\right)\left(1-e^{-3}\right) P(X<2,Y<1)=6∫02e−2xdx∫01e−3ydy=6(1−e−4)(1−e−3).
(3) f X ( x ) = ∫ 0 + ∞ 6 e − 2 x − 3 y d y = 2 e − 2 x , x > 0 f_{X}(x)=\int_{0}^{+\infty} 6 e^{-2 x-3 y} d y=2 e^{-2 x}, x>0 fX(x)=∫0+∞6e−2x−3ydy=2e−2x,x>0.
(4) 由于 f X ( x ) = 2 e − 2 x , f Y ( y ) = 3 e − 3 y f_{X}(x)=2 e^{-2 x}, f_{Y}(y)=3 e^{-3 y} fX(x)=2e−2x,fY(y)=3e−3y, 故 X , Y X, Y X,Y 相互独立, 因此 P ( X < 3 ∣ Y < 1 ) = P ( X < 3 ) = 1 − e − 6 . P(X<3 \mid Y<1)=P(X<3)=1-e^{-6} . P(X<3∣Y<1)=P(X<3)=1−e−6.(5) f ( x ∣ y ) = f ( x , y ) f Y ( y ) = 2 e − 2 x , x > 0 , y > 0 f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=2 e^{-2 x}, x>0, y>0 f(x∣y)=fY(y)f(x,y)=2e−2x,x>0,y>0.
三、(10分) X 1 , X 2 , X_{1}, X_{2}, X1,X2,i.i.d ∼ N ( μ , σ 2 ) , \sim N\left(\mu, \sigma^{2}\right), ∼N(μ,σ2), 求 E max { X 1 , X 2 } E \max \left\{X_{1}, X_{2}\right\} Emax{ X1,X2}.
Solution:
令 Y i = X i − μ σ , i = 1 , 2 Y_{i}=\frac{X_{i}-\mu}{\sigma}, i=1,2 Yi=σXi−μ,i=1,2, 故 max { Y 1 , Y 2 } = max { X 1 , X 2 } − μ σ \max \left\{Y_{1}, Y_{2}\right\}=\frac{\max \left\{X_{1}, X_{2}\right\}-\mu}{\sigma} max{ Y1,Y2}=σmax{ X1,X2}−μ.
而 E max { Y 1 , Y 2 } = E Y 1 I [ Y 1 ≥ Y 2 ] + E Y 2 I [ Y 1 < Y 2 ] = 2 E Y 1 I [ Y 1 ≥ Y 2 ] , E \max \left\{Y_{1}, Y_{2}\right\}=E Y_{1} I_{\left[Y_{1} \geq Y_{2}\right]}+E Y_{2} I_{\left[Y_{1}<Y_{2}\right]}=2 E Y_{1} I_{\left[Y_{1} \geq Y_{2}\right]}, Emax{ Y1,Y2}=EY1I[Y1≥Y2]+EY2I[Y1<Y2]=2EY1I[Y1≥Y2], E [ Y 1 I [ Y 1 ≥ Y 2 ] ] = 1 2 π ∫ − ∞ + ∞ ∫ x + ∞ y e − x 2 + y 2 2 d x d y = 1 2 π ∫ π 4 5 π 4 sin θ d θ ∫ 0 + ∞ r 2 e − r 2 2 d r E[ Y_{1} I_{\left[Y_{1} \geq Y_{2}\right]}]=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{x}^{+\infty} y e^{-\frac{x^{2}+y^{2}}{2}} d x d y=\frac{1}{2 \pi} \int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}} \sin \theta d \theta \int_{0}^{+\infty} r^{2} e^{-\frac{r^{2}}{2}} d r E[Y1I[Y1≥Y2]]=2π1∫−∞+∞∫x+∞ye−2x2+y2dxdy=2π1∫4π45πsinθdθ∫0+∞r2e−2r2dr
其中 ∫ 0 + ∞ r 2 e − r 2 2 d r = 2 ∫ 0 + ∞ r 2 2 e − r 2 2 d ( r 2 2 ) = 2 Γ ( 3 2 ) = π 2 \int_{0}^{+\infty} r^{2} e^{-\frac{r^{2}}{2}} d r=\sqrt{2} \int_{0}^{+\infty} \sqrt{\frac{r^{2}}{2}} e^{-\frac{r^{2}}{2}} d\left(\frac{r^{2}}{2}\right)=\sqrt{2} \Gamma\left(\frac{3}{2}\right)=\sqrt{\frac{\pi}{2}} ∫0+∞r2e−2r2dr=2∫0+∞2r2e−2r2d(2r2)=2Γ(23)=2π, 故 E max { Y 1 , Y 2 } = 1 π , E max { X 1 , X 2 } = μ + σ π E \max \left\{Y_{1}, Y_{2}\right\}=\frac{1}{\sqrt{\pi}}, E \max \left\{X_{1}, X_{2}\right\}=\mu+\frac{\sigma}{\sqrt{\pi}} Emax{ Y1,Y2}=π1,Emax{ X1,X2}=μ+πσ.
四、(20分) E X = 0 , Var ( X ) = σ 2 , E X=0, \operatorname{Var}(X)=\sigma^{2}, EX=0,Var(X)=σ2, 证明对任意 ε > 0 , \varepsilon>0, ε>0, 有
(1)(10分) P ( ∣ X ∣ > ε ) ≤ σ 2 ε 2 P(|X|>\varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}} P(∣X∣>ε)≤ε2σ2;
(2)(10分) P ( X > ε ) ≤ σ 2 σ 2 + ε 2 P(X>\varepsilon) \leq \frac{\sigma^{2}}{\sigma^{2}+\varepsilon^{2}} P(X>ε)≤σ2+ε2σ2.
Solution:
(1) 记 I [ ∣ X ∣ > ε ] = { 1 , ∣ X ∣ > ε , 0 , ∣ X ∣ ≤ ε . I_{[|X|>\varepsilon]}=\left\{\begin{array}{ll}1, & |X|>\varepsilon, \\ 0, & |X| \leq \varepsilon .\end{array}\right. I[∣X∣>ε]={ 1,0,∣X∣>ε,∣X∣≤ε. 它是集合 { ω : ∣ X ( ω ) ∣ > ε } \{\omega:|X(\omega)|>\varepsilon\} { ω:∣X(ω)∣>ε} 的示性函数, 可以看出: I [ ∣ X ∣ > ε ] ≤ ∣ X ∣ 2 ε 2 I_{[|X|>\varepsilon]} \leq \frac{|X|^{2}}{\varepsilon^{2}} I[∣X∣>ε]≤ε2∣X∣2 故 P ( ∣ X ∣ > ε ) = E I [ ∣ X ∣ > ε ] ≤ E ∣ X ∣ 2 ε 2 = σ 2 ε 2 P(|X|>\varepsilon)=E I_{[|X|>\varepsilon]} \leq \frac{E|X|^{2}}{\varepsilon^{2}}=\frac{\sigma^{2}}{\varepsilon^{2}} P(∣X∣>ε)=EI[∣X∣>ε]≤ε2E∣X∣2=ε2σ2.
(2) 由马尔可夫不等式, 有 P ( X > ε ) = P ( X + a > ε + a ) ≤ E ( X + a ) 2 ( ε + a ) 2 = σ 2 + a 2 ( ε + a ) 2 , P(X>\varepsilon)=P(X+a>\varepsilon+a) \leq \frac{E(X+a)^{2}}{(\varepsilon+a)^{2}}=\frac{\sigma^{2}+a^{2}}{(\varepsilon+a)^{2}}, P(X>ε)=P(X+a>ε+a)≤(ε+a)2E(X+a)2=(ε+a)2σ2+a2,取 a = σ 2 ε a=\frac{\sigma^{2}}{\varepsilon} a=εσ2, 则恰有 σ 2 + a 2 ( ε + a ) 2 = σ 2 + σ 4 ε 2 ( ε + σ 2 ε ) 2 = σ 2 σ 2 + ε 2 , \frac{\sigma^{2}+a^{2}}{(\varepsilon+a)^{2}}=\frac{\sigma^{2}+\frac{\sigma^{4}}{\varepsilon^{2}}}{\left(\varepsilon+\frac{\sigma^{2}}{\varepsilon}\right)^{2}}=\frac{\sigma^{2}}{\sigma^{2}+\varepsilon^{2}}, (ε+a)2σ2+a2=(ε+εσ2)2σ2+ε2σ4=σ2+ε2σ2,因此 P ( X > ε ) ≤ σ 2 σ 2 + ε 2 P(X>\varepsilon) \leq \frac{\sigma^{2}}{\sigma^{2}+\varepsilon^{2}} P(X>ε)≤σ2+ε2σ2.
五、(10分) X 1 , X 2 X_{1}, X_{2} X1,X2, i.i.d. ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), 求 X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 的分布.
Solution:
由于分母 X 2 X_{2} X2 的分布关于 0 对称, 因此 X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 与 X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 同分布, 而很明显 N ( 0 , 1 ) χ 2 ( 1 ) 1 \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(1)}{1}}} 1χ2(1)N(0,1) 是一个 自由度为 1 的 t t t 分布, 所以 X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 也是自由度为 1 的 t t t 分布, 它的概率密度是 f ( x ) = Γ ( 1 ) π Γ ( 1 2 ) ( x 2 + 1 ) − 1 = 1 π ⋅ 1 1 + x 2 , − ∞ < x < + ∞ , f(x)=\frac{\Gamma(1)}{\sqrt{\pi} \Gamma\left(\frac{1}{2}\right)}\left(x^{2}+1\right)^{-1}=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<+\infty, f(x)=πΓ(21)Γ(1)(x2+1)−1=π1⋅1+x21,−∞<x<+∞,即标准柯西分布.
六、(20分) X 1 , X 2 , … , X n , i . i . d ∼ N ( μ , σ 2 ) , μ X_{1}, X_{2}, \ldots, X_{n}, i . i . d \sim N\left(\mu, \sigma^{2}\right), \mu X1,X2,…,Xn,i.i.d∼N(μ,σ2),μ 已知, 证明:
(1)(10分) 1 n ∑ i = 1 n ( X i − μ ) 2 \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} n1∑i=1n(Xi−μ)2 是 σ 2 \sigma^{2} σ2 的有效估计;
(2)(10分) 1 n π 2 ∑ i = 1 n ∣ X i − μ ∣ \frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|X_{i}-\mu\right| n12π∑i=1n∣Xi−μ∣ 是 σ \sigma σ 的无偏估计, 但不有效.
Solution:
(1) 先计算 σ 2 \sigma^{2} σ2 的 Fisher 信息量, 根据定义 I ( σ 2 ) = E [ ∂ ln f ( X ; σ 2 ) ∂ σ 2 ] 2 = 1 4 σ 4 E [ ( X − μ σ ) 2 − 1 ] 2 , I\left(\sigma^{2}\right)=E\left[\frac{\partial \ln f\left(X ; \sigma^{2}\right)}{\partial \sigma^{2}}\right]^{2}=\frac{1}{4 \sigma^{4}} E\left[\left(\frac{X-\mu}{\sigma}\right)^{2}-1\right]^{2}, I(σ2)=E[∂σ2∂lnf(X;σ2)]2=4σ41E[(σX−μ)2−1]2,恰好 E [ ( X − μ σ ) 2 − 1 ] 2 E\left[\left(\frac{X-\mu}{\sigma}\right)^{2}-1\right]^{2} E[(σX−μ)2−1]2 是 χ 2 \chi^{2} χ2 (1) 的方差, 故 I ( σ 2 ) = 1 2 σ 4 I\left(\sigma^{2}\right)=\frac{1}{2 \sigma^{4}} I(σ2)=2σ41. 因此, σ 2 \sigma^{2} σ2 的 C-R 下界为 1 n I ( σ 2 ) = 2 n σ 4 . \frac{1}{n I\left(\sigma^{2}\right)}=\frac{2}{n} \sigma^{4} . nI(σ2)1=n2σ4. 再计算 1 n ∑ i = 1 n ( X i − μ ) 2 \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} n1∑i=1n(Xi−μ)2 的期望方差, 由于 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \sim \chi^{2}(n) σ21∑i=1n(Xi−μ)2∼χ2(n), 期望是 n n n, 方差是 2 n 2 n 2n, 因此 E [ 1 n ∑ i = 1 n ( X i − μ ) 2 ] = σ 2 , Var [ 1 n ∑ i = 1 n ( X i − μ ) 2 ] = 2 n σ 4 , E\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]=\sigma^{2}, \quad \operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right]=\frac{2}{n} \sigma^{4}, E[n1i=1∑n(Xi−μ)2]=σ2,Var[n1i=1∑n(Xi−μ)2]=n2σ4,它是无偏估计, 方差又恰好达到 C-R 下界, 故是有效估计.
(2) 首先, 令 g ( x ) = x g(x)=\sqrt{x} g(x)=x, 则 σ \sigma σ 的 C − R \mathrm{C}-\mathrm{R} C−R 下界为 [ g ′ ( σ 2 ) ] 2 n I ( σ 2 ) = 1 2 n σ 2 \frac{\left[g^{\prime}\left(\sigma^{2}\right)\right]^{2}}{n I\left(\sigma^{2}\right)}=\frac{1}{2 n} \sigma^{2} nI(σ2)[g′(σ2)]2=2n1σ2, 我们再去计算 1 n π 2 ∑ i = 1 n ∣ X i − μ ∣ \frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|X_{i}-\mu\right| n12π∑i=1n∣Xi−μ∣ 的期望方差: 1 σ E ∣ X 1 − μ ∣ = ∫ − ∞ + ∞ ∣ x ∣ 1 2 π e − x 2 2 d x = 2 π ∫ 0 + ∞ x e − x 2 2 d x = 2 π ⇒ E ∣ X 1 − μ ∣ = 2 π σ , \frac{1}{\sigma} E\left|X_{1}-\mu\right|=\int_{-\infty}^{+\infty}|x| \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=\sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} x e^{-\frac{x^{2}}{2}} d x=\sqrt{\frac{2}{\pi}} \Rightarrow E\left|X_{1}-\mu\right|=\sqrt{\frac{2}{\pi}} \sigma, σ1E∣X1−μ∣=∫−∞+∞∣x∣2π1e−2x2dx=π2∫0+∞xe−2x2dx=π2⇒E∣X1−μ∣=π2σ, E ∣ X 1 − μ ∣ 2 = σ 2 , 故 Var ( ∣ X 1 − μ ∣ ) = σ 2 − 2 π σ 2 = ( 1 − 2 π ) σ 2 , E\left|X_{1}-\mu\right|^{2}=\sigma^{2} \text {, 故 } \operatorname{Var}\left(\left|X_{1}-\mu\right|\right)=\sigma^{2}-\frac{2}{\pi} \sigma^{2}=\left(1-\frac{2}{\pi}\right) \sigma^{2} \text {, } E∣X1−μ∣2=σ2, 故 Var(∣X1−μ∣)=σ2−π2σ2=(1−π2)σ2, 故 E [ 1 n π 2 ∑ i = 1 n ∣ X i − μ ∣ ] = σ , Var [ 1 n π 2 ∑ i = 1 n ∣ X i − μ ∣ ] = ( π 2 − 1 ) n σ 2 E\left[\frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|X_{i}-\mu\right|\right]=\sigma, \operatorname{Var}\left[\frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|X_{i}-\mu\right|\right]=\frac{\left(\frac{\pi}{2}-1\right)}{n} \sigma^{2} E[n12π∑i=1n∣Xi−μ∣]=σ,Var[n12π∑i=1n∣Xi−μ∣]=n(2π−1)σ2, 它是无偏估计, 但 没有达到 C-R 下界, 不是有效估计.
七、(20分) 总体的分布函数 F ( x ) F(x) F(x)连续单增, X ( 1 ) , X ( 2 ) , … , X ( n ) X_{(1)}, X_{(2)}, \ldots, X_{(n)} X(1),X(2),…,X(n) 是来自该总体的随机样本的次序统计量, Y i = F ( X ( i ) ) , Y_{i}=F\left(X_{(i)}\right), Yi=F(X(i)), 求
(1)(10分) E Y i , Var ( Y i ) E Y_{i}, \operatorname{Var}\left(Y_{i}\right) EYi,Var(Yi);
(2)(10分) ( Y 1 , Y 2 , … , Y n ) T \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T} (Y1,Y2,…,Yn)T 的协方差矩阵.
Solution:
(1) 由于 U 1 = F ( X 1 ) , U 2 = F ( X 2 ) , ⋯ , U n = F ( X n ) U_{1}=F\left(X_{1}\right), U_{2}=F\left(X_{2}\right), \cdots, U_{n}=F\left(X_{n}\right) U1=F(X1),U2=F(X2),⋯,Un=F(Xn) 独立同服从 [ 0 , 1 ] [0,1] [0,1] 上均匀分布, 故 Y i = U ( i ) Y_{i}=U_{(i)} Yi=U(i) 恰好就是均匀分布的次序统计量, 根据次序统计量的定义, 有:
f i ( y ) = n ! ( i − 1 ) ! ( n − i ) ! f U ( y ) P i − 1 { U ≤ y } P n − i { U ≥ y } , 一一代入, 有 f i ( y ) = n ! ( i − 1 ) ! ( n − i ) ! y i − 1 ( 1 − y ) n − i , 0 ≤ y ≤ 1 , 恰好是 Beta ( i , n − i + 1 ) . \begin{gathered} f_{i}(y)=\frac{n !}{(i-1) !(n-i) !} f_{U}(y) P^{i-1}\{U \leq y\} P^{n-i}\{U \geq y\}, \text { 一一代入, 有 } \\ f_{i}(y)=\frac{n !}{(i-1) !(n-i) !} y^{i-1}(1-y)^{n-i}, 0 \leq y \leq 1 \text {, 恰好是 } \operatorname{Beta}(i, n-i+1) . \end{gathered} fi(y)=(i−1)!(n−i)!n!fU(y)Pi−1{ U≤y}Pn−i{ U≥y}, 一一代入, 有 fi(y)=(i−1)!(n−i)!n!yi−1(1−y)n−i,0≤y≤1, 恰好是 Beta(i,n−i+1).根据贝塔分布的性质 E Y i = i n + 1 , Var ( Y i ) = i ( n − i + 1 ) ( n + 1 ) 2 ( n + 2 ) E Y_{i}=\frac{i}{n+1}, \operatorname{Var}\left(Y_{i}\right)=\frac{i(n-i+1)}{(n+1)^{2}(n+2)} EYi=n+1i,Var(Yi)=(n+1)2(n+2)i(n−i+1).
(2) 我们考虑 ( Y i , Y j ) , i < j \left(Y_{i}, Y_{j}\right), i<j (Yi,Yj),i<j 的联合分布, 根据次序统计量的定义, 有
f i , j ( x , y ) = n ! ( i − 1 ) ! ( j − i − 1 ) ! ( n − j ) ! f U ( x ) f U ( y ) P i − 1 { U ≤ x } P j − i − 1 { x ≤ U ≤ y } P n − j { U ≥ y } f_{i, j}(x, y)=\frac{n !}{(i-1) !(j-i-1) !(n-j) !} f_{U}(x) f_{U}(y) P^{i-1}\{U \leq x\} P^{j-i-1}\{x \leq U \leq y\} P^{n-j}\{U \geq y\} fi,j(x,y)=(i−1)!(j−i−1)!(n−j)!n!fU(x)fU(y)Pi−1{ U≤x}Pj−i−1{ x≤U≤y}Pn−j{ U≥y}即 f i , j ( x , y ) = n ! ( i − 1 ) ! ( j − i − 1 ) ! ( n − j ) ! x i − 1 ( y − x ) j − i − 1 ( 1 − y ) n − j , 0 ≤ x ≤ y ≤ 1. f_{i, j}(x, y)=\frac{n !}{(i-1) !(j-i-1) !(n-j) !} x^{i-1}(y-x)^{j-i-1}(1-y)^{n-j}, 0 \leq x \leq y \leq 1. fi,j(x,y)=(i−1)!(j−i−1)!(n−j)!n!xi−1(y−x)j−i−1(1−y)n−j,0≤x≤y≤1.
协方差问题归为计算积分 ∫ 0 1 ∫ 0 y x y ⋅ x i − 1 ( y − x ) j − i − 1 ( 1 − y ) n − j d x d y \int_{0}^{1} \int_{0}^{y} x y \cdot x^{i-1}(y-x)^{j-i-1}(1-y)^{n-j} d x d y ∫01∫0yxy⋅xi−1(y−x)j−i−1(1−y)n−jdxdy, 而如果我 们把 y y y 视作 y = x + ( y − x ) y=x+(y-x) y=x+(y−x), 那么这个积分可以化为两部分: ∫ 0 1 ∫ 0 y x i + 1 ( y − x ) j − i − 1 ( 1 − y ) n − j d x d y = ( i + 1 ) ! ( j − i − 1 ) ! ( n − j ) ! ( n + 2 ) ! , ∫ 0 1 ∫ 0 y x i ( y − x ) j − i ( 1 − y ) n − j d x d y = i ! ( j − i ) ! ( n − j ) ! ( n + 2 ) ! , \begin{gathered} \int_{0}^{1} \int_{0}^{y} x^{i+1}(y-x)^{j-i-1}(1-y)^{n-j} d x d y=\frac{(i+1) !(j-i-1) !(n-j) !}{(n+2) !}, \\ \int_{0}^{1} \int_{0}^{y} x^{i}(y-x)^{j-i}(1-y)^{n-j} d x d y=\frac{i !(j-i) !(n-j) !}{(n+2) !}, \end{gathered} ∫01∫0yxi+1(y−x)j−i−1(1−y)n−jdxdy=(n+2)!(i+1)!(j−i−1)!(n−j)!,∫01∫0yxi(y−x)j−i(1−y)n−jdxdy=(n+2)!i!(j−i)!(n−j)!,(首先请看 f i , j ( x , y ) f_{i, j}(x, y) fi,j(x,y) 的表达式, 会发现
( n + 2 ) ! ( i + 1 ) ! ( j − i − 1 ) ! ( n − j ) ! x i + 1 ( y − x ) j − i − 1 ( 1 − y ) n − j \frac{(n+2) !}{(i+1) !(j-i-1) !(n-j) !} x^{i+1}(y-x)^{j-i-1}(1-y)^{n-j} (i+1)!(j−i−1)!(n−j)!(n+2)!xi+1(y−x)j−i−1(1−y)n−j恰也是一个密度函数, 故通过概率的正则性就很容易得到上述两个积分值) 故有 E [ Y i Y j ] = i ( j + 1 ) ( n + 1 ) ( n + 2 ) E [Y_{i} Y_{j}]=\frac{i(j+1)}{(n+1)(n+2)} E[YiYj]=(n+1)(n+2)i(j+1), 故 Cov ( Y i , Y j ) = i ( n + 1 − j ) ( n + 1 ) 2 ( n + 2 ) \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\frac{i(n+1-j)}{(n+1)^{2}(n+2)} Cov(Yi,Yj)=(n+1)2(n+2)i(n+1−j). 因此协方差矩阵是 Σ = ( a i j ) n × n \Sigma=\left(a_{i j}\right)_{n \times n} Σ=(aij)n×n, 其中 a i j = i ( n + 1 − j ) ( n + 1 ) 2 ( n + 2 ) , i < j a_{i j}=\frac{i(n+1-j)}{(n+1)^{2}(n+2)}, i<j aij=(n+1)2(n+2)i(n+1−j),i<j.
八、(20分) 有来自总体 U ( θ , 2 θ ) U(\theta,2\theta) U(θ,2θ)的随机样本 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn, 求 θ \theta θ的矩估计和MLE, 并验证无偏性和相合性.
Solution:
先求矩估计, 求期望得 E X 1 = 3 θ 2 EX_1=\frac{3\theta}{2} EX1=23θ, 由替换原理得 θ ^ M = 2 3 X ˉ \hat{\theta}_M=\frac{2}{3}\bar{X} θ^M=32Xˉ. 求期望容易看出它无偏, 由强大数律知它是强相合估计.
再求MLE, 写出似然函数是
L ( θ ) = 1 θ n I { X ( n ) < 2 θ } I { X ( 1 ) > θ } = I { X ( n ) 2 < θ < X ( 1 ) } θ n , L\left( \theta \right) =\frac{1}{\theta ^n}I_{\left\{ X_{\left( n \right)}<2\theta \right\}}I_{\left\{ X_{\left( 1 \right)}>\theta \right\}}=\frac{I_{\left\{ \frac{X_{\left( n \right)}}{2}<\theta <X_{\left( 1 \right)} \right\}}}{\theta ^n}, L(θ)=θn1I{ X(n)<2θ}I{ X(1)>θ}=θnI{ 2X(n)<θ<X(1)}, 可以看出 1 θ n \frac{1}{\theta^n} θn1关于 θ \theta θ单调递减, 故 θ \theta θ取最小值时为MLE, 即 θ ^ L = X ( n ) 2 \hat{\theta}_L=\frac{X_{(n)}}{2} θ^L=2X(n). 利用变换 Y i = X i − θ θ ∼ U ( 0 , 1 ) Y_i=\frac{X_i-\theta}{\theta}\sim U(0,1) Yi=θXi−θ∼U(0,1), 知 Y ( n ) = X ( n ) − θ θ ∼ B e t a ( n , 1 ) Y_{(n)}=\frac{X_{(n)}-\theta}{\theta}\sim Beta(n,1) Y(n)=θX(n)−θ∼Beta(n,1), 故有
E ( Y ( n ) ) = n n + 1 , E ( θ ^ L ) = 1 2 E ( X ( n ) ) = 1 2 [ θ E ( Y ( n ) ) + θ ] = 2 n + 1 2 n + 2 θ . E\left( Y_{\left( n \right)} \right) =\frac{n}{n+1},\quad E\left( \hat{\theta}_L \right) =\frac{1}{2}E\left( X_{\left( n \right)} \right) =\frac{1}{2}\left[ \theta E\left( Y_{\left( n \right)} \right) +\theta \right] =\frac{2n+1}{2n+2}\theta . E(Y(n))=n+1n,E(θ^L)=21E(X(n))=21[θE(Y(n))+θ]=2n+22n+1θ.所以 θ ^ L \hat{\theta}_L θ^L不无偏, 但渐近无偏, 再看相合性, 有
P ( ∣ θ ^ L − θ ∣ > ε 1 ) = P ( ∣ X ( n ) − 2 θ ∣ > ε 2 ) = P ( ∣ Y ( n ) − 1 ∣ > ε 3 ) = P ( Y ( n ) < 1 − ε 3 ) = ( 1 − ε 3 ) n , \begin{aligned} P\left( \left| \hat{\theta}_L-\theta \right|>\varepsilon _1 \right) &=P\left( \left| X_{\left( n \right)}-2\theta \right|>\varepsilon _2 \right)\\ &=P\left( \left| Y_{\left( n \right)}-1 \right|>\varepsilon _3 \right)\\ &=P\left( Y_{\left( n \right)}<1-\varepsilon _3 \right)\\ &=\left( 1-\varepsilon _3 \right) ^n,\\ \end{aligned} P(∣∣∣θ^L−θ∣∣∣>ε1)=P(∣∣X(n)−2θ∣∣>ε2)=P(∣∣Y(n)−1∣∣>ε3)=P(Y(n)<1−ε3)=(1−ε3)n, 级数收敛, 故它是强相合估计.
九、(20分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是来自 N ( μ , 1 ) N(\mu,1) N(μ,1)的随机样本, 考虑假设检验问题 H 0 : μ = 1 v s H 1 : μ = 2 H_0:\mu = 1 \quad \mathrm{vs} \quad H_1:\mu=2 H0:μ=1vsH1:μ=2 给定拒绝域 W = { X ˉ > 1.6 } W=\{\bar{X}>1.6\} W={ Xˉ>1.6}, 回答下述问题:
(1)(10分) n = 10 n=10 n=10, 求犯两类错误的概率 α \alpha α, β \beta β;
(2)(10分) 要求第二类错误 β ≤ 0.01 \beta\le0.01 β≤0.01, 求样本量的取值范围.
Solution:
(1) 先算第一类错误, 原假设成真时 X ˉ ∼ N ( 1 , 1 n ) \bar{X}\sim N(1,\frac{1}{n}) Xˉ∼N(1,n1), 故
α = P μ = 1 ( X ˉ > 1.6 ) = P μ = 1 ( n ( X ˉ − 1 ) > 0.6 n ) = 1 − Φ ( 0.6 n ) = 1 − Φ ( 0.6 10 ) . \begin{aligned} \alpha &=P_{\mu =1}\left( \bar{X}>1.6 \right)\\ &=P_{\mu =1}\left( \sqrt{n}\left( \bar{X}-1 \right) >0.6\sqrt{n} \right)\\ &=1-\Phi \left( 0.6\sqrt{n} \right)\\ &=1-\Phi \left( 0.6\sqrt{10} \right) .\\ \end{aligned} α=Pμ=1(Xˉ>1.6)=Pμ=1(n(Xˉ−1)>0.6n)=1−Φ(0.6n)=1−Φ(0.610). 再算第二类错误, 备择假设成真时 X ˉ ∼ N ( 2 , 1 n ) \bar{X}\sim N(2,\frac{1}{n}) Xˉ∼N(2,n1), 故
β = P μ = 2 ( X ˉ ≤ 1.6 ) = P μ = 1 ( n ( X ˉ − 2 ) ≤ − 0.4 n ) = Φ ( − 0.4 n ) = Φ ( − 0.4 10 ) . \begin{aligned} \beta &=P_{\mu =2}\left( \bar{X}\le 1.6 \right)\\ &=P_{\mu =1}\left( \sqrt{n}\left( \bar{X}-2 \right) \le -0.4\sqrt{n} \right)\\ &=\Phi \left( -0.4\sqrt{n} \right)\\ &=\Phi \left( -0.4\sqrt{10} \right) .\\ \end{aligned} β=Pμ=2(Xˉ≤1.6)=Pμ=1(n(Xˉ−2)≤−0.4n)=Φ(−0.4n)=Φ(−0.410). (2) 根据第(1)问计算, 令 Φ ( − 0.4 n ) ≤ 0.01 \Phi \left( -0.4\sqrt{n} \right) \le 0.01 Φ(−0.4n)≤0.01, 得
− 0.4 n ≤ − 2.33 * n ≥ 2.3 3 2 0. 4 2 * n ≥ 34. -0.4\sqrt{n}\le -2.33\Longrightarrow n\ge \frac{2.33^2}{0.4^2}\Longrightarrow n\ge 34. −0.4n≤−2.33*n≥0.422.332*n≥34.
边栏推荐
- 继承和多态(上)
- Answer to "software testing" exercise: Chapter 1
- arduino+DS18B20温度传感器(蜂鸣器报警)+LCD1602显示(IIC驱动)
- 继承和多态(下)
- First acquaintance with C language (Part 2)
- Tyut Taiyuan University of technology 2022 introduction to software engineering summary
- Alibaba cloud microservices (I) service registry Nacos, rest template and feign client
- TYUT太原理工大学2022数据库大题之概念模型设计
- 3. Number guessing game
- TYUT太原理工大学2022数据库大题之分解关系模式
猜你喜欢
There is always one of the eight computer operations that you can't learn programming
2.初识C语言(2)
(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
View UI Plus 发布 1.2.0 版本,新增 Image、Skeleton、Typography组件
Application architecture of large live broadcast platform
5.函数递归练习
13 power map
架构师怎样绘制系统架构蓝图?
Alibaba cloud microservices (III) sentinel open source flow control fuse degradation component
Decomposition relation model of the 2022 database of tyut Taiyuan University of Technology
随机推荐
凡人修仙学指针-1
13 power map
How to ensure data consistency between MySQL and redis?
Solution: warning:tensorflow:gradients do not exist for variables ['deny_1/kernel:0', 'deny_1/bias:0',
更改VS主题及设置背景图片
Iterable、Collection、List 的常见方法签名以及含义
5.MSDN的下载和使用
C语言实现扫雷游戏(完整版)
TYUT太原理工大学2022数据库题库选择题总结
MYSQL索引钟B-TREE ,B+TREE ,HASH索引之间的区别和应用场景
E-R graph to relational model of the 2022 database of tyut Taiyuan University of Technology
MySQL Database Constraints
Comparison between FileInputStream and bufferedinputstream
6.函数的递归
View UI plus released version 1.2.0 and added image, skeleton and typography components
Several high-frequency JVM interview questions
Alibaba cloud microservices (I) service registry Nacos, rest template and feign client
Alibaba cloud microservices (II) distributed service configuration center and Nacos usage scenarios and implementation introduction
FileInputStream和BufferedInputStream的比较
Questions and answers of "signal and system" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology