当前位置:网站首页>5阶多项式轨迹
5阶多项式轨迹
2022-07-06 23:39:00 【不懂音乐的欣赏者】
前提条件
- 为了获得一条速度连续的轨迹,则该轨迹中每段轨迹需要满足位置和速度约束(4个边界条件),即前一段轨迹 J i − 1 J_{i-1} Ji−1的终点位置和速度要和后一段轨迹 J i J_{i} Ji的位置速度相同,因此使用三阶多项式来表示每段轨迹。
- 为了获得一条加速度连续的轨迹,则该轨迹中每段轨迹需要满足位置、速度和加速度约束(6个边界条件),即前一段轨迹 J i − 1 J_{i-1} Ji−1的终点位置、速度和加速度要和后一段轨迹 J i J_{i} Ji的位置、速度和加速度相同,因此使用五阶多项式来表示每段轨迹。
正文
对于一条轨迹而言,通常可以将一条连续轨迹分段成多段多项式轨迹,这里考虑每段轨迹使用5阶多项式来表示。其中每段轨迹对应的时间均从 0 0 0开始到 T i T_i Ti结束,即对于第 i i i段轨迹 J i J_i Ji而言,其开始时间为 0 0 0,结束时间为 T i T_i Ti,起始位置、速度、加速度分别为 p i p_i pi、 v i v_i vi和 a i a_i ai。根据多项式轨迹的定义
p = c 0 + c 1 t + c 2 t 2 + c 3 t 3 + c 4 t 4 + c 5 t 5 v = c 1 + 2 c 2 t + 3 c 3 t 2 + 4 c 4 t 3 + 5 c 5 t 4 a = 2 c 2 + 6 c 3 t + 12 c 4 t 2 + 20 c 5 t 3 j e r k = 6 c 3 + 24 c 4 t + 60 c 5 t 2 s n a p = 24 c 4 + 120 c 5 t . ( 公 式 1 ) \begin{aligned} p&=c_{0}+c_{1}t+c_{2}t^2+c_{3}t^3+c_{4}t^4+c_{5}t^5 \\ v&=\quad\quad c_{1}+2c_{2}t+3c_{3}t^2+4c_{4}t^3+5c_{5}t^4 \\ a&=\quad\quad\quad\quad2c_{2}+6c_{3}t+12c_{4}t^2+20c_{5}t^3 \\ jerk&=\quad\quad\quad\quad\quad\quad \quad6c_{3}+24c_{4}t+60c_{5}t^2 \\ snap&=\quad\quad\quad\quad\quad\quad \quad\quad \quad\quad 24c_{4}+120c_{5}t. \quad\quad(公式1)\\ \end{aligned} pvajerksnap=c0+c1t+c2t2+c3t3+c4t4+c5t5=c1+2c2t+3c3t2+4c4t3+5c5t4=2c2+6c3t+12c4t2+20c5t3=6c3+24c4t+60c5t2=24c4+120c5t.(公式1)
以第 1 1 1段轨迹为例,将 t = 0 t=0 t=0带入(公式1)可以得第一段轨迹开始时:
p 1 ( 0 ) = c 10 , v 1 ( 0 ) = c 11 , a 1 ( 0 ) = 2 c 12 . \begin{aligned} p_1(0)&=c_{10}, \\ v_1(0)&=c_{11},\\ a_1(0)&=2c_{12}. \end{aligned} p1(0)v1(0)a1(0)=c10,=c11,=2c12.
将 t = T 1 t=T_1 t=T1带入(公式1)可以得到初始时第一段轨迹结束时:
p 1 ( T 1 ) = c 10 + c 11 ( T 1 − 0 ) + c 12 ( T 1 − 0 ) 2 + c 13 ( T 1 − 0 ) 3 + c 14 ( T 1 − 0 ) 4 + c 15 ( T 1 − 0 ) 5 = c 10 + c 11 T 1 + c 12 T 1 2 + c 13 T 1 3 + c 14 T 1 4 + c 15 T 1 5 , v 1 ( T 1 ) = c 11 + 2 c 12 ( T 1 − 0 ) + 3 c 13 ( T 1 − 0 ) 2 + 4 c 14 ( T 1 − 0 ) 3 + 5 c 15 ( T 1 − 0 ) 4 = c 11 + 2 c 12 ( T 1 ) + 3 c 13 ( T 1 ) 2 + 4 c 14 ( T 1 ) 3 + 5 c 15 ( T 1 ) 4 , a 1 ( T 1 ) = 2 c 12 + 6 c 13 ( T 1 − 0 ) + 12 c 14 ( T 1 − 0 ) 2 + 20 c 15 ( T 1 − 0 ) 3 = 2 c 12 + 6 c 13 ( T 1 ) + 12 c 14 ( T 1 ) 2 + 20 c 15 ( T 1 ) 3 . \begin{aligned} p_1(T_1)&=c_{10}+c_{11}(T_1-0)+c_{12}(T_1-0)^2+c_{13}(T_1-0)^3+c_{14}(T_1-0)^4+c_{15}(T_1-0)^5 \\ & = c_{10}+c_{11}T_1+c_{12}T_1^2+c_{13}T_1^3+c_{14}T_1^4+c_{15}T_1^5, \\ v_1(T_1)&=c_{11}+2c_{12}(T_1-0)+3c_{13}(T_1-0)^2+4c_{14}(T_1-0)^3+5c_{15}(T_1-0)^4 \\ & = c_{11}+2c_{12}(T_1)+3c_{13}(T_1)^2+4c_{14}(T_1)^3+5c_{15}(T_1)^4, \\ a_1(T_1)&=2c_{12}+6c_{13}(T_1-0)+12c_{14}(T_1-0)^2+20c_{15}(T_1-0)^3\\ & = 2c_{12}+6c_{13}(T_1)+12c_{14}(T_1)^2+20c_{15}(T_1)^3. \end{aligned} p1(T1)v1(T1)a1(T1)=c10+c11(T1−0)+c12(T1−0)2+c13(T1−0)3+c14(T1−0)4+c15(T1−0)5=c10+c11T1+c12T12+c13T13+c14T14+c15T15,=c11+2c12(T1−0)+3c13(T1−0)2+4c14(T1−0)3+5c15(T1−0)4=c11+2c12(T1)+3c13(T1)2+4c14(T1)3+5c15(T1)4,=2c12+6c13(T1−0)+12c14(T1−0)2+20c15(T1−0)3=2c12+6c13(T1)+12c14(T1)2+20c15(T1)3.
同理可得第二段轨迹开始时:
p 2 ( 0 ) = c 20 , v 2 ( 0 ) = c 21 , a 2 ( 0 ) = 2 c 22 . \begin{aligned} p_2(0)&=c_{20}, \\ v_2(0)&=c_{21},\\ a_2(0)&=2c_{22}. \end{aligned} p2(0)v2(0)a2(0)=c20,=c21,=2c22.
由于一条轨迹是由多段多项式轨迹组成,因此需要满足:
{ c 10 = p 1 ( 0 ) : 起 始 位 置 边 界 条 件 c 11 = v 1 ( 0 ) : 起 始 速 度 边 界 条 件 2 c 12 = a 1 ( 0 ) : 起 始 加 速 度 边 界 条 件 前 一 段 轨 迹 终 止 j e r k 与 后 一 段 轨 迹 起 始 s n a p 相 同 , 无 j e r k 大 小 约 束 , 即 j e r k 1 ( T 1 ) − j e r k 2 ( 0 ) = 0 6 c 13 + 24 c 14 T 1 + 60 c 15 T 1 2 − 6 c 23 = 0 前 一 段 轨 迹 终 止 s n a p 与 后 一 段 轨 迹 起 始 s n a p 相 同 , 无 s n a p 大 小 约 束 , 即 s n a p 1 ( T 1 ) − s n a p 2 ( 0 ) = 0 24 c 14 + 120 T 1 − 24 c 24 = 0 前 一 段 轨 迹 终 止 位 置 与 后 一 段 轨 迹 起 始 位 置 相 同 , 即 p 1 ( T 1 ) = p 2 ( 0 ) : c 10 + c 11 T 1 + c 12 T 1 2 + c 13 T 1 3 + c 14 T 1 4 + c 15 T 1 5 = p 2 ( 0 ) c 10 + c 11 T 1 + c 12 T 1 2 + c 13 T 1 3 + c 14 T 1 4 + c 15 T 1 5 − c 20 = 0 前 一 段 轨 迹 终 止 位 置 与 后 一 段 轨 迹 起 始 速 度 相 同 , 即 v 1 ( T 1 ) − v 2 ( 0 ) = 0 c 11 + 2 c 12 T 1 + 3 c 13 T 1 2 + 4 c 14 T 1 3 + 5 c 15 T 1 4 − c 21 = 0 前 一 段 轨 迹 终 止 位 置 与 后 一 段 轨 迹 起 始 加 速 度 相 同 , 即 a 1 ( T 1 ) − a 2 ( 0 ) = 0 2 c 12 + 6 c 13 T 1 + 12 c 14 T 1 2 + 20 c 15 T 1 3 − 2 c 22 = 0 \left\{\begin{aligned} &c_{10}=p_1(0):起始位置边界条件 \\ &c_{11}=v_1(0):起始速度边界条件 \\ &2c_{12}=a_1(0):起始加速度边界条件 \\ &前一段轨迹终止jerk与后一段轨迹起始snap相同,无jerk大小约束,即jerk_1(T_1)-jerk_2(0)=0\\ &6c_{13}+24c_{14}T_1+60c_{15}T_1^2-6c_{23}=0\\ &前一段轨迹终止snap与后一段轨迹起始snap相同,无snap大小约束,即snap_1(T_1)-snap_2(0)=0\\ &24c_{14}+120T_1-24c_{24}=0\\ &前一段轨迹终止位置与后一段轨迹起始位置相同,即p_1(T_1)=p_2(0):\\ &c_{10}+c_{11}T_1+c_{12}T_1^2+c_{13}T_1^3+c_{14}T_1^4+c_{15}T_1^5=p_2(0)\\ &c_{10}+c_{11}T_1+c_{12}T_1^2+c_{13}T_1^3+c_{14}T_1^4+c_{15}T_1^5-c_{20}=0\\ &前一段轨迹终止位置与后一段轨迹起始速度相同,即v_1(T_1)-v_2(0)=0\\ &c_{11}+2c_{12}T_1+3c_{13}T_1^2+4c_{14}T_1^3+5c_{15}T_1^4-c_{21}=0\\ &前一段轨迹终止位置与后一段轨迹起始加速度相同,即a_1(T_1)-a_2(0)=0\\ &2c_{12}+6c_{13}T_1+12c_{14}T_1^2+20c_{15}T_1^3-2c_{22}=0\\ \end{aligned}\right. ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧c10=p1(0):起始位置边界条件c11=v1(0):起始速度边界条件2c12=a1(0):起始加速度边界条件前一段轨迹终止jerk与后一段轨迹起始snap相同,无jerk大小约束,即jerk1(T1)−jerk2(0)=06c13+24c14T1+60c15T12−6c23=0前一段轨迹终止snap与后一段轨迹起始snap相同,无snap大小约束,即snap1(T1)−snap2(0)=024c14+120T1−24c24=0前一段轨迹终止位置与后一段轨迹起始位置相同,即p1(T1)=p2(0):c10+c11T1+c12T12+c13T13+c14T14+c15T15=p2(0)c10+c11T1+c12T12+c13T13+c14T14+c15T15−c20=0前一段轨迹终止位置与后一段轨迹起始速度相同,即v1(T1)−v2(0)=0c11+2c12T1+3c13T12+4c14T13+5c15T14−c21=0前一段轨迹终止位置与后一段轨迹起始加速度相同,即a1(T1)−a2(0)=02c12+6c13T1+12c14T12+20c15T13−2c22=0
将上述约束转换成矩阵Ax=b形式,可得:
x = [ c 10 c 11 c 12 c 13 c 14 c 15 c 20 c 21 c 22 c 23 c 24 c 25 ] x=\begin{bmatrix} c_{10}\\ c_{11}\\ c_{12} \\ c_{13} \\ c_{14} \\ c_{15} \\ c_{20} \\ c_{21} \\ c_{22} \\ c_{23} \\ c_{24} \\ c_{25} \\ \end{bmatrix} x=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡c10c11c12c13c14c15c20c21c22c23c24c25⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
b = [ p 1 ( 0 ) v 1 ( 0 ) a 1 ( 0 ) 0 0 p 2 ( 0 ) 0 0 0 ] b=\begin{bmatrix} {p_1(0)}\\ {v_1(0)}\\ {a_1(0)}\\ 0\\ 0\\ p_2(0)\\ 0\\ 0\\ 0\\ \\ \end{bmatrix} b=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1(0)v1(0)a1(0)00p2(0)000⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
构建A矩阵如下:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 1 1 | |||||||||||
1 | 1 1 1 | |||||||||||
2 | 2 2 2 | |||||||||||
3 | 6 6 6 | 24 T 1 24T_1 24T1 | 60 T 1 2 60T_1^2 60T12 | − 6 -6 −6 | ||||||||
4 | 24 24 24 | 120 T 1 120T_1 120T1 | − 24 -24 −24 | |||||||||
5 | 1 1 1 | T 1 T_1 T1 | T 1 2 T_1^2 T12 | T 1 3 T_1^3 T13 | T 1 4 T_1^4 T14 | T 1 5 T_1^5 T15 | ||||||
6 | 1 1 1 | T 1 T_1 T1 | T 1 2 T_1^2 T12 | T 1 3 T_1^3 T13 | T 1 4 T_1^4 T14 | T 1 5 T_1^5 T15 | − 1 -1 −1 | |||||
7 | 1 1 1 | 2 T 1 2T_1 2T1 | 3 T 1 2 3T_1^2 3T12 | 4 T 1 3 4T_1^3 4T13 | 5 T 1 4 5T_1^4 5T14 | − 1 -1 −1 | ||||||
8 | 2 2 2 | 6 T 6T 6T | 12 T 1 2 12T_1^2 12T12 | 20 T 1 3 20T_1^3 20T13 | − 2 -2 −2 | |||||||
9 | … | |||||||||||
10 | 1 1 1 | T 2 T_2 T2 | T 2 2 T_2^2 T22 | T 2 3 T_2^3 T23 | T 2 4 T_2^4 T24 | T 2 5 T_2^5 T25 | ||||||
11 | 1 1 1 | 2 T 2 2T_2 2T2 | 3 T 2 2 3T_2^2 3T22 | 4 T 2 3 4T_2^3 4T23 | 5 T 2 4 5T_2^4 5T24 | |||||||
12 | 2 2 2 | 6 T 2 6T_2 6T2 | 12 T 2 2 12T_2^2 12T22 | 20 T 2 3 20T_2^3 20T23 |
注:红色是行/列标号。
inline void generate(const Eigen::MatrixXd &inPs,
const Eigen::VectorXd &ts)
{
T1 = ts;
T2 = T1.cwiseProduct(T1);
T3 = T2.cwiseProduct(T1);
T4 = T2.cwiseProduct(T2);
T5 = T4.cwiseProduct(T1);
A.reset();
b.setZero();
A(0, 0) = 1.0;
A(1, 1) = 1.0;
A(2, 2) = 2.0;
b.row(0) = headPVA.col(0).transpose();
b.row(1) = headPVA.col(1).transpose();
b.row(2) = headPVA.col(2).transpose();
for (int i = 0; i < N - 1; i++)
{
A(6 * i + 3, 6 * i + 3) = 6.0;
A(6 * i + 3, 6 * i + 4) = 24.0 * T1(i);
A(6 * i + 3, 6 * i + 5) = 60.0 * T2(i);
A(6 * i + 3, 6 * i + 9) = -6.0;
A(6 * i + 4, 6 * i + 4) = 24.0;
A(6 * i + 4, 6 * i + 5) = 120.0 * T1(i);
A(6 * i + 4, 6 * i + 10) = -24.0;
A(6 * i + 5, 6 * i) = 1.0;
A(6 * i + 5, 6 * i + 1) = T1(i);
A(6 * i + 5, 6 * i + 2) = T2(i);
A(6 * i + 5, 6 * i + 3) = T3(i);
A(6 * i + 5, 6 * i + 4) = T4(i);
A(6 * i + 5, 6 * i + 5) = T5(i);
A(6 * i + 6, 6 * i) = 1.0;
A(6 * i + 6, 6 * i + 1) = T1(i);
A(6 * i + 6, 6 * i + 2) = T2(i);
A(6 * i + 6, 6 * i + 3) = T3(i);
A(6 * i + 6, 6 * i + 4) = T4(i);
A(6 * i + 6, 6 * i + 5) = T5(i);
A(6 * i + 6, 6 * i + 6) = -1.0;
A(6 * i + 7, 6 * i + 1) = 1.0;
A(6 * i + 7, 6 * i + 2) = 2 * T1(i);
A(6 * i + 7, 6 * i + 3) = 3 * T2(i);
A(6 * i + 7, 6 * i + 4) = 4 * T3(i);
A(6 * i + 7, 6 * i + 5) = 5 * T4(i);
A(6 * i + 7, 6 * i + 7) = -1.0;
A(6 * i + 8, 6 * i + 2) = 2.0;
A(6 * i + 8, 6 * i + 3) = 6 * T1(i);
A(6 * i + 8, 6 * i + 4) = 12 * T2(i);
A(6 * i + 8, 6 * i + 5) = 20 * T3(i);
A(6 * i + 8, 6 * i + 8) = -2.0;
b.row(6 * i + 5) = inPs.col(i).transpose();
}
A(6 * N - 3, 6 * N - 6) = 1.0;
A(6 * N - 3, 6 * N - 5) = T1(N - 1);
A(6 * N - 3, 6 * N - 4) = T2(N - 1);
A(6 * N - 3, 6 * N - 3) = T3(N - 1);
A(6 * N - 3, 6 * N - 2) = T4(N - 1);
A(6 * N - 3, 6 * N - 1) = T5(N - 1);
A(6 * N - 2, 6 * N - 5) = 1.0;
A(6 * N - 2, 6 * N - 4) = 2 * T1(N - 1);
A(6 * N - 2, 6 * N - 3) = 3 * T2(N - 1);
A(6 * N - 2, 6 * N - 2) = 4 * T3(N - 1);
A(6 * N - 2, 6 * N - 1) = 5 * T4(N - 1);
A(6 * N - 1, 6 * N - 4) = 2;
A(6 * N - 1, 6 * N - 3) = 6 * T1(N - 1);
A(6 * N - 1, 6 * N - 2) = 12 * T2(N - 1);
A(6 * N - 1, 6 * N - 1) = 20 * T3(N - 1);
b.row(6 * N - 3) = tailPVA.col(0).transpose();
b.row(6 * N - 2) = tailPVA.col(1).transpose();
b.row(6 * N - 1) = tailPVA.col(2).transpose();
A.factorizeLU();
A.solve(b);
return;
边栏推荐
- Design, configuration and points for attention of network arbitrary source multicast (ASM) simulation using OPNET
- NPDP产品经理认证,到底是何方神圣?
- Where is NPDP product manager certification sacred?
- Leetcode: maximum number of "balloons"
- DFS, BFS and traversal search of Graphs
- Full link voltage test: the dispute between shadow database and shadow table
- 一条 update 语句的生命经历
- Knapsack problem unrelated to profit (depth first search)
- If you want to choose some departments to give priority to OKR, how should you choose pilot departments?
- Mysql database learning (7) -- a brief introduction to pymysql
猜你喜欢
Digital innovation driven guide
漏电继电器JD1-100
在米家、欧瑞博、苹果HomeKit趋势下,智汀如何从中脱颖而出?
Y58. Chapter III kubernetes from entry to proficiency - continuous integration and deployment (Sany)
ThinkPHP Association preload with
sql优化常用技巧及理解
Phenomenon analysis when Autowired annotation is used for list
Torch optimizer small parsing
漏电继电器JELR-250FG
Design, configuration and points for attention of network specified source multicast (SSM) simulation using OPNET
随机推荐
Creation and use of thread pool
Initial experience of annotation
CentOS 7.9 installing Oracle 21C Adventures
[optimal web page width and its implementation] [recommended collection "
JVM (19) -- bytecode and class loading (4) -- talk about class loader again
论文阅读【Sensor-Augmented Egocentric-Video Captioning with Dynamic Modal Attention】
Timer create timer
AOSP ~binder communication principle (I) - Overview
2039: [Bluebridge cup 2022 preliminaries] Li Bai's enhanced version (dynamic planning)
纪念下,我从CSDN搬家到博客园啦!
10 distributed databases that take you to the galaxy
[PM products] what is cognitive load? How to adjust cognitive load reasonably?
Longest common subsequence (LCS) (dynamic programming, recursive)
Knapsack problem unrelated to profit (depth first search)
痛心啊 收到教训了
Autowired注解用于List时的现象解析
Vector and class copy constructors
App clear data source code tracking
论文阅读【Semantic Tag Augmented XlanV Model for Video Captioning】
LabVIEW is opening a new reference, indicating that the memory is full