当前位置:网站首页>STM32 ADC和DMA

STM32 ADC和DMA

2022-07-07 07:48:00 小李干净又卫生

STM32 ADC和DMA简单总结

1.简介

使用野火开发板F429IGT6

ADC框图

image-20220702105713458

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hcRJQP6A-1656898707918)(https://raw.githubusercontent.com/Master-4869/pictures/main/image-20220702105905661.png)]

ADC主要的选项配置有

  • 时钟的分频配置,这个决定了ADC的时钟速度,
  • 采样时钟数量,采样的时间长一点会更准,整个一个采样的周期是采样时间加上转换时间,如果使用12位的就需要加上12个时钟的转换时间,这样3个采样时间加上12个转换时间,整个采样周期就是15个周期
  • 数据对齐的方式为左对齐还是右对齐,因为数据寄存器的宽度是16位的,采样的精度只能12位
  • 扫描模式是同一个ADC开启多个通道,是否要轮流转换每个通道
  • 连续采样是ADC是否要一直采样转换还是触发一次就停止转换
  • EOC是转换结束标志
  • 可以配置ADC的触发是软件触发还是硬件触发
  • rank可以配置各个通道的转换先后顺序
  • ADC可以分为规则转换通道和注入转换通道,一般用的就是规则转换通道

ADC还可以配置为多重采样的模式,一共有3个ADC,可以轮流来采样转换同一个通道,这样在第一个ADC转换的时候第二个可以紧接着采样,可以提升ADC的采样率。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2GFsNAoN-1656898707918)(https://raw.githubusercontent.com/Master-4869/pictures/main/image-20220702111226199.png)]

将3个ADC的相同通道选中,在ADC1的模式中选择三重采样。配置DMA以ADC1为主,其他ADC不需要配置,每个ADC都要打开循环检测模式。

image-20220702111709462

image-20220702111817887

DMA的配置主要有

  • 数据传输的方向,分为存储器到存储器,外设到存储器,存储器到外设
  • 传输的模式是循环传输还是只传输一次
  • 传输数据的宽度
  • 传输时外设寄存器的地址和存储器的地址要不要递增,注意每次递增的地址的大小是和设置的数据宽度相同的

如果使用FIFO的话可以设置突发模式等

2.代码

使用cubemx6.6.0

MDK5.34

2.1多通道DMA

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file adc.c * @brief This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

/* ADC1 init function */
void MX_ADC1_Init(void)
{
    

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 3;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = 3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
  /* USER CODE END ADC1_Init 2 */

}

void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
    

  GPIO_InitTypeDef GPIO_InitStruct = {
    0};
  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspInit 0 */

  /* USER CODE END ADC1_MspInit 0 */
    /* ADC1 clock enable */
    __HAL_RCC_ADC1_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 PA4 ------> ADC1_IN4 PA6 ------> ADC1_IN6 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA2_Stream0;
    hdma_adc1.Init.Channel = DMA_CHANNEL_0;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
    
      Error_Handler();
    }

    __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);

  /* USER CODE BEGIN ADC1_MspInit 1 */
	
  /* USER CODE END ADC1_MspInit 1 */
  }
}

void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
    

  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspDeInit 0 */

  /* USER CODE END ADC1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC1_CLK_DISABLE();

    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 PA4 ------> ADC1_IN4 PA6 ------> ADC1_IN6 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

    HAL_GPIO_DeInit(GPIOA, GPIO_PIN_4|GPIO_PIN_6);

    /* ADC1 DMA DeInit */
    HAL_DMA_DeInit(adcHandle->DMA_Handle);
  /* USER CODE BEGIN ADC1_MspDeInit 1 */

  /* USER CODE END ADC1_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */
//void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
//{
    
// ADC_Value = HAL_ADC_GetValue(hadc);

//}
/* USER CODE END 1 */

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
__IO uint16_t ADC_Value[300];
//extern UART_HandleTypeDef huart1;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/** * @brief The application entry point. * @retval int */
int main(void)
{
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */
	uint32_t chanel_value[3] = {
    0};
  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	if (HAL_ADC_Start_DMA(&hadc1,(uint32_t *)&ADC_Value,300) == HAL_OK)
	{
    
		printf("dma开启成功\n\r");
	
	}
	else
		printf("dma开启失败\n\r");
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    
		chanel_value[0] = 0;
		chanel_value[1] = 0;
		chanel_value[2] = 0;
		for(int i = 0;i<300;)
		{
    
			chanel_value[0] += ADC_Value[i++];
			chanel_value[1] += ADC_Value[i++];
			chanel_value[2] += ADC_Value[i++];
		}
		chanel_value[0] = (float)chanel_value[0]/100;
		chanel_value[1] = (float)chanel_value[1]/100;
		chanel_value[2] = (float)chanel_value[2]/100;
		printf("\r\n------ ADC DMA ------\r\n\r\n");
    printf(" AD1 value = %1.3fV \r\n", chanel_value[0]*3.3f/4096);
    printf(" AD2 value = %1.3fV \r\n", chanel_value[1]*3.3f/4096);
		printf(" AD3 value = %1.3fV \r\n", chanel_value[2]*3.3f/4096);

		
		HAL_Delay(100);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/** * @brief System Clock Configuration * @retval None */
void SystemClock_Config(void)
{
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    0};

  /** Configure the main internal regulator output voltage */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 15;
  RCC_OscInitStruct.PLL.PLLN = 216;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Activate the Over-Drive mode */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/** * @brief This function is executed in case of error occurrence. * @retval None */
void Error_Handler(void)
{
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
    
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */
void assert_failed(uint8_t *file, uint32_t line)
{
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

HAL_ADC_Start_DMA函数的作用就是启动ADC并且使用DMA传输数据。后面跟的数据长度要和自己设定的缓冲区长度一致,DMA会自动递增地址存放数据,递增设置的长度之后会自动复位地址重新开始从第一个地址写数据,覆盖掉之前的数据。

ADC规则通道只有一个数据寄存器, ADC_DR,在使能 DMA 模式的情况下(ADC_CR2 寄存器中的 DMA 位置 1),每完成规则通道组中的 一个通道转换后,都会生成一个 DMA 请求。这样便可将转换的数据从 ADC_DR 寄存器传输 到用软件选择的目标位置。

2.2三重ADC

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file adc.c * @brief This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc1;

/* ADC1 init function */
void MX_ADC1_Init(void)
{
    

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {
    0};
  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure the ADC multi-mode */
  multimode.Mode = ADC_TRIPLEMODE_INTERL;
  multimode.DMAAccessMode = ADC_DMAACCESSMODE_2;
  multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_5CYCLES;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}
/* ADC2 init function */
void MX_ADC2_Init(void)
{
    

  /* USER CODE BEGIN ADC2_Init 0 */

  /* USER CODE END ADC2_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC2_Init 1 */

  /* USER CODE END ADC2_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  hadc2.Init.ScanConvMode = DISABLE;
  hadc2.Init.ContinuousConvMode = ENABLE;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.NbrOfConversion = 1;
  hadc2.Init.DMAContinuousRequests = DISABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC2_Init 2 */

  /* USER CODE END ADC2_Init 2 */

}
/* ADC3 init function */
void MX_ADC3_Init(void)
{
    

  /* USER CODE BEGIN ADC3_Init 0 */

  /* USER CODE END ADC3_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC3_Init 1 */

  /* USER CODE END ADC3_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc3.Instance = ADC3;
  hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc3.Init.Resolution = ADC_RESOLUTION_12B;
  hadc3.Init.ScanConvMode = DISABLE;
  hadc3.Init.ContinuousConvMode = ENABLE;
  hadc3.Init.DiscontinuousConvMode = DISABLE;
  hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc3.Init.NbrOfConversion = 1;
  hadc3.Init.DMAContinuousRequests = DISABLE;
  hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc3) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC3_Init 2 */

  /* USER CODE END ADC3_Init 2 */

}

void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
    

  GPIO_InitTypeDef GPIO_InitStruct = {
    0};
  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspInit 0 */

  /* USER CODE END ADC1_MspInit 0 */
    /* ADC1 clock enable */
    __HAL_RCC_ADC1_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA2_Stream0;
    hdma_adc1.Init.Channel = DMA_CHANNEL_0;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
    
      Error_Handler();
    }

    __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);

  /* USER CODE BEGIN ADC1_MspInit 1 */

  /* USER CODE END ADC1_MspInit 1 */
  }
  else if(adcHandle->Instance==ADC2)
  {
    
  /* USER CODE BEGIN ADC2_MspInit 0 */

  /* USER CODE END ADC2_MspInit 0 */
    /* ADC2 clock enable */
    __HAL_RCC_ADC2_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC2 GPIO Configuration PC3 ------> ADC2_IN13 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /* USER CODE BEGIN ADC2_MspInit 1 */

  /* USER CODE END ADC2_MspInit 1 */
  }
  else if(adcHandle->Instance==ADC3)
  {
    
  /* USER CODE BEGIN ADC3_MspInit 0 */

  /* USER CODE END ADC3_MspInit 0 */
    /* ADC3 clock enable */
    __HAL_RCC_ADC3_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC3 GPIO Configuration PC3 ------> ADC3_IN13 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /* USER CODE BEGIN ADC3_MspInit 1 */

  /* USER CODE END ADC3_MspInit 1 */
  }
}

void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
    

  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspDeInit 0 */

  /* USER CODE END ADC1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC1_CLK_DISABLE();

    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

    /* ADC1 DMA DeInit */
    HAL_DMA_DeInit(adcHandle->DMA_Handle);
  /* USER CODE BEGIN ADC1_MspDeInit 1 */

  /* USER CODE END ADC1_MspDeInit 1 */
  }
  else if(adcHandle->Instance==ADC2)
  {
    
  /* USER CODE BEGIN ADC2_MspDeInit 0 */

  /* USER CODE END ADC2_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC2_CLK_DISABLE();

    /**ADC2 GPIO Configuration PC3 ------> ADC2_IN13 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

  /* USER CODE BEGIN ADC2_MspDeInit 1 */

  /* USER CODE END ADC2_MspDeInit 1 */
  }
  else if(adcHandle->Instance==ADC3)
  {
    
  /* USER CODE BEGIN ADC3_MspDeInit 0 */

  /* USER CODE END ADC3_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC3_CLK_DISABLE();

    /**ADC3 GPIO Configuration PC3 ------> ADC3_IN13 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

  /* USER CODE BEGIN ADC3_MspDeInit 1 */

  /* USER CODE END ADC3_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint32_t adc_buffer[300] = {
    0};
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/** * @brief The application entry point. * @retval int */
int main(void)
{
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();
  MX_ADC3_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	printf("\r\n------ ADC DMA ------\r\n\r\n");
	HAL_ADC_Start(&hadc3);
	HAL_ADC_Start(&hadc2);
	HAL_ADCEx_MultiModeStart_DMA(&hadc1,adc_buffer,300);
	
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    
    /* USER CODE END WHILE */
		printf("\r\n------ ADC DMA ------\r\n\r\n");
		printf(" AD1 value = %1.3fV \r\n", (uint16_t)adc_buffer[0]*3.3f/4096);
		printf(" AD1 value = %1.3fV \r\n", (adc_buffer[0]>>16)*3.3f/4096);
		printf(" AD1 value = %1.3fV \r\n", (uint16_t)adc_buffer[1]*3.3f/4096);
		printf(" AD1 value = %1.3fV \r\n", (adc_buffer[1]>>16)*3.3f/4096);
		HAL_Delay(100);

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/** * @brief System Clock Configuration * @retval None */
void SystemClock_Config(void)
{
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    0};

  /** Configure the main internal regulator output voltage */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 15;
  RCC_OscInitStruct.PLL.PLLN = 216;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Activate the Over-Drive mode */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/** * @brief This function is executed in case of error occurrence. * @retval None */
void Error_Handler(void)
{
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
    
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */
void assert_failed(uint8_t *file, uint32_t line)
{
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

注意在启动ADC的时候要以下面的顺序开启,DMA是使用ADC1的

	HAL_ADC_Start(&hadc3);
	HAL_ADC_Start(&hadc2);
	HAL_ADCEx_MultiModeStart_DMA(&hadc1,adc_buffer,300);

在多重ADC模式下,可在多模式数据寄存器(ADC_CDR)中读取转换的数据。可在多模式状态寄存器(ADC_CSR)中读取状态位

在三重 ADC 模式下,ADC 通用数据寄存器 (ADC_CDR) 包含 ADC1、ADC2 和 ADC3 的规则转换数据。 按照所选的存储顺序使用全部 32 个寄存器位。

在双重 ADC 模式下,ADC 通用数据寄存器 (ADC_CDR) 包含 ADC1 和 ADC2 的规则转换数据。使用全部 32 个寄存器位。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-segkD2js-1656898707919)(https://raw.githubusercontent.com/Master-4869/pictures/main/image-20220702114556931.png)]

image-20220702114610061

3.结果

多通道ADC

11111

多重ADC

22222

工程文件已上传。

工程文件

原网站

版权声明
本文为[小李干净又卫生]所创,转载请带上原文链接,感谢
https://blog.csdn.net/Master_0_/article/details/125593825