当前位置:网站首页>R analysis visual practical data (flight \u education \u restaurant \u tenant \u change \u life \u safety)
R analysis visual practical data (flight \u education \u restaurant \u tenant \u change \u life \u safety)
2022-06-11 03:14:00 【ATU trans】
R Data Science
graphics
Statistics
Descriptive statistics | Frequency and contingency table | Correlation and covariance | t- test | Nonparametric statistics
adopt sapply() Make descriptive statistics
> mystats <- function(x, na.omit=FALSE){
if (na.omit)
x <- x[!is.na(x)]
m <- mean(x)
n <- length(x)
s <- sd(x)
skew <- sum((x-m)^3/s^3)/n
kurt <- sum((x-m)^4/s^4)/n - 3
return(c(n=n, mean=m, stdev=s,
skew=skew, kurtosis=kurt))
}
> myvars <- c("mpg", "hp", "wt")
> sapply(mtcars[myvars], mystats)
mpg hp wt
n 32.000 32.000 32.0000
mean 20.091 146.688 3.2172
stdev 6.027 68.563 0.9785
skew 0.611 0.726 0.4231
kurtosis -0.373 -0.136 -0.0227
Use by() Descriptive statistics of groups
> dstats <- function(x)sapply(x, mystats)
> myvars <- c("mpg", "hp", "wt")
> by(mtcars[myvars], mtcars$am, dstats)
mtcars$am: 0
mpg hp wt
n 19.000 19.0000 19.000
mean 17.147 160.2632 3.769
stdev 3.834 53.9082 0.777
skew 0.014 -0.0142 0.976
kurtosis -0.803 -1.2097 0.142
----------------------------------------
mtcars$am: 1
mpg hp wt
n 13.0000 13.000 13.000
mean 24.3923 126.846 2.411
stdev 6.1665 84.062 0.617
skew 0.0526 1.360 0.210
kurtosis -1.4554 0.563 -1.174
Return to
Fitting and interpreting linear models | Assessment model assumptions | Choose in the competitive model
Variable analysis
Use R Model the basic experimental design | Fit and explain ANOVA Type model | Assessment model assumptions
Efficacy analysis
Determine sample size requirements | Calculate the effect size | Evaluate statistical power
Intermediate graphics
Visualize bivariate and multivariable relationships | Use scatter and line charts | understand corrgram | Use mosaic and correlation diagrams
Resampling statistics and bootstrapping
Understand the logic of replacement testing | Apply displacement test to linear model | Use bootstrapping to obtain confidence intervals
Generalized linear model
Develop a generalized linear model | Forecast classification results | Modeling count data
Principal component and factor analysis
Principal component analysis | Exploratory factor analysis | Understand other latent variable models
The time series
Create time series | Decompose the time series into components | Develop predictive models | Forecast future data
R Analyze and visualize practical data
application 1: Explore flight delays
application 2: Explore the level of education
application 3: The location of the specialty restaurant on the map
application 4: The tenant's heat map shows
application 5: Analysis of urban change
application 6: Life expectancy analysis
application 7: Public safety analysis
For details, please refer to - Yatu inter
边栏推荐
- 亚马逊测评自养号,小白应该如何开始?
- File file = new file ("test.txt") file path
- 通过程序启动QQ,实现自动登录.
- Forest v1.5.22 release! Kotlin support
- B_QuRT_User_Guide(20)
- MySQL学习笔记:JSON嵌套数组查询
- B_ QuRT_ User_ Guide(18)
- Basic use of sonarqube platform
- HUST Software Engineering (Experiment 2) -- TDD test driven development experiment.
- Arduino uno connected to jq8900-16p voice broadcast module
猜你喜欢

intXX_ T and int_ fastXX_ T what is the difference- What is the difference between intXX_ t and int_ fastXX_ t?

pip 安装 qt5 。

Helm deploy traifik ingress

Cygwin reports an error child_ info_ fork::abort: XXX. dll: Loaded to different address: parent(XXX) != child(XXX)

Go 语言的优势和学习路线图

JS memory leak

The new colleague asked me what "where 1=1" means???

How to ensure reliable delivery of messages?

ASLR

B_QuRT_User_Guide(16)
随机推荐
20220610 Friday
多值映射:ArrayListMultimap和HashMultimap
Fuluo classic source code Fuluo classic system development principle sharing
富络经典源码富络经典系统开发原理分享
Explication du cours de graphacademy: neo4j Graph Data Science Foundation
CPT 102_ LEC 17
com. mchange. v2.c3p0. Combopooleddatasource red
反射三种方式
Helm deploy traifik ingress
Array full permutation
Ora-00392 ora-00312 error handling
Graphacademy course explanation: Fundamentals of neo4j graph data science
How to state clearly and concisely the product requirements?
023 MySQL索引优化口诀-索引失效的常见情况
GraphAcademy 课程讲解:《Neo4j 图数据科学基础》
B_QuRT_User_Guide(19)
Basic use of sonarqube platform
2022年6月中国数据库排行榜:TiDB卷土重来摘桂冠,达梦蛰伏五月夺探花
[big guy show] aiops in the eyes of Borui data, choosing the right track and the right people
已解决: JDBC连接Mysql失败报错: 'The last packet sent successfully to the server was 0 milliseconds ago. '