当前位置:网站首页>R analysis visual practical data (flight \u education \u restaurant \u tenant \u change \u life \u safety)
R analysis visual practical data (flight \u education \u restaurant \u tenant \u change \u life \u safety)
2022-06-11 03:14:00 【ATU trans】
R Data Science
graphics
Statistics
Descriptive statistics | Frequency and contingency table | Correlation and covariance | t- test | Nonparametric statistics
adopt sapply() Make descriptive statistics
> mystats <- function(x, na.omit=FALSE){
if (na.omit)
x <- x[!is.na(x)]
m <- mean(x)
n <- length(x)
s <- sd(x)
skew <- sum((x-m)^3/s^3)/n
kurt <- sum((x-m)^4/s^4)/n - 3
return(c(n=n, mean=m, stdev=s,
skew=skew, kurtosis=kurt))
}
> myvars <- c("mpg", "hp", "wt")
> sapply(mtcars[myvars], mystats)
mpg hp wt
n 32.000 32.000 32.0000
mean 20.091 146.688 3.2172
stdev 6.027 68.563 0.9785
skew 0.611 0.726 0.4231
kurtosis -0.373 -0.136 -0.0227
Use by() Descriptive statistics of groups
> dstats <- function(x)sapply(x, mystats)
> myvars <- c("mpg", "hp", "wt")
> by(mtcars[myvars], mtcars$am, dstats)
mtcars$am: 0
mpg hp wt
n 19.000 19.0000 19.000
mean 17.147 160.2632 3.769
stdev 3.834 53.9082 0.777
skew 0.014 -0.0142 0.976
kurtosis -0.803 -1.2097 0.142
----------------------------------------
mtcars$am: 1
mpg hp wt
n 13.0000 13.000 13.000
mean 24.3923 126.846 2.411
stdev 6.1665 84.062 0.617
skew 0.0526 1.360 0.210
kurtosis -1.4554 0.563 -1.174
Return to
Fitting and interpreting linear models | Assessment model assumptions | Choose in the competitive model
Variable analysis
Use R Model the basic experimental design | Fit and explain ANOVA Type model | Assessment model assumptions
Efficacy analysis
Determine sample size requirements | Calculate the effect size | Evaluate statistical power
Intermediate graphics
Visualize bivariate and multivariable relationships | Use scatter and line charts | understand corrgram | Use mosaic and correlation diagrams
Resampling statistics and bootstrapping
Understand the logic of replacement testing | Apply displacement test to linear model | Use bootstrapping to obtain confidence intervals
Generalized linear model
Develop a generalized linear model | Forecast classification results | Modeling count data
Principal component and factor analysis
Principal component analysis | Exploratory factor analysis | Understand other latent variable models
The time series
Create time series | Decompose the time series into components | Develop predictive models | Forecast future data
R Analyze and visualize practical data
application 1: Explore flight delays
application 2: Explore the level of education
application 3: The location of the specialty restaurant on the map
application 4: The tenant's heat map shows
application 5: Analysis of urban change
application 6: Life expectancy analysis
application 7: Public safety analysis
For details, please refer to - Yatu inter
边栏推荐
- Forest v1.5.22 release! Kotlin support
- B_QuRT_User_Guide(20)
- Whether the outbound sequence is the inbound sequence
- ASLR
- Start QQ through the program to realize automatic login
- ASLR
- Hqchart actual combat tutorial 55 area map of K line of ouyi.com
- Construction of Flink development environment and wordcount
- postgresql源码学习(十七)—— MVCC②-快照与隔离级别简介
- @Controller @transactional @service annotation is invalid and less dependent
猜你喜欢

Young people fleeing big cities: shouldering housing prices and pressure, but not epidemics

WinDbg virtual machine dual machine debugging driver file debugging

pip 安装 qt5 。
![[big guy show] aiops in the eyes of Borui data, choosing the right track and the right people](/img/a6/61d125326fc81532a56858c384460f.jpg)
[big guy show] aiops in the eyes of Borui data, choosing the right track and the right people

Basic use of sonarqube platform

Graphacademy course explanation: Fundamentals of neo4j graph data science

第七章 常用的协议简介(1)

intXX_ T and int_ fastXX_ T what is the difference- What is the difference between intXX_ t and int_ fastXX_ t?

Help you distinguish GNU, GCC, GCC and G++

HQChart实战教程55-欧易网K线面积图
随机推荐
Unity项目优化详解(持续补充ing)
第七章 常用的协议简介(1)
数据库唯一索引和普通索引的区别?
Determine whether a string of numbers is the result of a quick sort
Niuke: two numbers that only appear once in the array
怎样确保消息的可靠性投递?
文件合成器
Rs232/rs485 to 4G DTU uploading temperature and humidity sensor data based on Modbus protocol to remote TCP server
Live broadcast! Feature matching of orb-slam3 series (mlpnp, word bag model, etc.).
ORA-00392 ORA-00312 错误处理
Whether the outbound sequence is the inbound sequence
Flink开发环境搭建及WordCount
Arduino Uno接JQ8900-16p语音播报模块
postgresql源码学习(22)—— 故障恢复③-事务日志的注册
023 MySQL索引优化口诀-索引失效的常见情况
Cygwin reports an error child_ info_ fork::abort: XXX. dll: Loaded to different address: parent(XXX) != child(XXX)
cv. Matchtemplate image model matching opencv
Deep parsing of question mark expressions
判断一串数字是否是快速排序某一次的结果
Error excluded identifier before '(' token, grpc enumeration class compilation error