当前位置:网站首页>Transformation 和 Action 常用算子
Transformation 和 Action 常用算子
2022-08-05 05:12:00 【价值成长】
一、Transformation
Transformation 算子 | Meaning(含义) |
---|---|
map(func) | 对原 RDD 中每个元素运用 func 函数,并生成新的 RDD |
filter(func) | 对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD |
flatMap(func) | 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq )。 |
mapPartitions(func) | 与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U> ,其中 T 是 RDD 的类型,即 RDD[T] |
mapPartitionsWithIndex(func) | 与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U> ,其中第一个参数为分区索引 |
sample(withReplacement, fraction, seed) | 数据采样,有三个可选参数:设置是否放回(withReplacement)、采样的百分比(fraction)、随机数生成器的种子(seed); |
union(otherDataset) | 合并两个 RDD |
intersection(otherDataset) | 求两个 RDD 的交集 |
distinct([numTasks])) | 去重 |
groupByKey([numTasks]) | 按照 key 值进行分区,即在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, Iterable<V>) Note: 如果分组是为了在每一个 key 上执行聚合操作(例如,sum 或 average),此时使用 reduceByKey 或 aggregateByKey 性能会更好Note: 默认情况下,并行度取决于父 RDD 的分区数。可以传入 numTasks 参数进行修改。 |
reduceByKey(func, [numTasks]) | 按照 key 值进行分组,并对分组后的数据执行归约操作。 |
aggregateByKey(zeroValue,numPartitions)(seqOp, combOp, [numTasks]) | 当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数进行配置。 |
sortByKey([ascending], [numTasks]) | 按照 key 进行排序,其中的 key 需要实现 Ordered 特质,即可比较 |
join(otherDataset, [numTasks]) | 在一个 (K, V) 和 (K, W) 类型的 dataset 上调用时,返回一个 (K, (V, W)) pairs 的 dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin , rightOuterJoin 和 fullOuterJoin 等算子。 |
cogroup(otherDataset, [numTasks]) | 在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, (Iterable<V>, Iterable<W>)) tuples 的 dataset。 |
cartesian(otherDataset) | 在一个 T 和 U 类型的 dataset 上调用时,返回一个 (T, U) 类型的 dataset(即笛卡尔积)。 |
coalesce(numPartitions) | 将 RDD 中的分区数减少为 numPartitions。 |
repartition(numPartitions) | 随机重新调整 RDD 中的数据以创建更多或更少的分区,并在它们之间进行平衡。 |
repartitionAndSortWithinPartitions(partitioner) | 根据给定的 partitioner(分区器)对 RDD 进行重新分区,并对分区中的数据按照 key 值进行排序。这比调用 repartition 然后再 sorting(排序)效率更高,因为它可以将排序过程推送到 shuffle 操作所在的机器。 |
二、Action
Action(动作) | Meaning(含义) |
---|---|
reduce(func) | 使用函数func执行归约操作 |
collect() | 以一个 array 数组的形式返回 dataset 的所有元素,适用于小结果集。 |
count() | 返回 dataset 中元素的个数。 |
first() | 返回 dataset 中的第一个元素,等价于 take(1)。 |
take(n) | 将数据集中的前 n 个元素作为一个 array 数组返回。 |
takeSample(withReplacement, num, [seed]) | 对一个 dataset 进行随机抽样 |
takeOrdered(n, [ordering]) | 按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。只适用于小结果集,因为所有数据都会被加载到驱动程序的内存中进行排序。 |
saveAsTextFile(path) | 将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。 |
saveAsSequenceFile(path) | 将 dataset 中的元素以 Hadoop SequenceFile 的形式写入到本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。该操作要求 RDD 中的元素需要实现 Hadoop 的 Writable 接口。对于 Scala 语言而言,它可以将 Spark 中的基本数据类型自动隐式转换为对应 Writable 类型。(目前仅支持 Java and Scala) |
saveAsObjectFile(path) | 使用 Java 序列化后存储,可以使用 SparkContext.objectFile() 进行加载。(目前仅支持 Java and Scala) |
countByKey() | 计算每个键出现的次数。 |
foreach(func) | 遍历 RDD 中每个元素,并对其执行fun函数 |
边栏推荐
猜你喜欢
服务器磁盘阵列
8.04 Day35-----MVC三层架构
【学生毕业设计】基于web学生信息管理系统网站的设计与实现(13个页面)
The mall background management system based on Web design and implementation
Mini Program_Dynamic setting of tabBar theme skin
The difference between span tag and p
The underlying mechanism of the class
How to identify false evidence and evidence?
Flex layout frog game clearance strategy
WPF中DataContext作用
随机推荐
Reverse theory knowledge 4
OFDM 十六讲 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems
coppercam入门手册[6]
RL reinforcement learning summary (1)
使用二维码解决固定资产管理的难题
判断语句_switch与case
LeetCode:1403. 非递增顺序的最小子序列【贪心】
Excel画图
[Decoding tools] Some online tools for Bitcoin
MySQL Foundation (1) - Basic Cognition and Operation
类的底层机制
Difference between for..in and for..of
software management rpm
Understanding and use of C# on set() and get() methods
淘宝账号如何快速提升到更高等级
Day019 方法重写与相关类的介绍
1068 Find More Coins
jvm three heap and stack
server disk array
【cesium】Load and locate 3D Tileset