当前位置:网站首页>Integral Special Notes - Definition of Integral
Integral Special Notes - Definition of Integral
2022-07-30 09:21:00 【The stars follow the moon】
一、定积分
f ( x ) f(x) f(x) 定义在 [ a , b ] [a, b] [a,b],any points [ a , b ] [a, b] [a,b] for the small area, 分点 a = x 0 < x 1 < x 2 < ⋯ < x n = b a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b a=x0<x1<x2<⋯<xn=b,称为 [ a , b ] [a, b] [a,b] 的一个分划.
若 ∃ I ∈ R \exists I \in \mathbf{R} ∃I∈R, 对 [ a , b ] [a, b] [a,b] of any division and ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in\left[x_{i-1}, x_{i}\right] ∀ξi∈[xi−1,xi] made and ∑ i = 1 n f ( ξ i ) Δ x i \sum \limits_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} i=1∑nf(ξi)Δxi,均有
lim λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = I ( λ = max 1 ≤ i ≤ n Δ x i ) \lim \limits_{\lambda \rightarrow 0} \sum \limits_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}=I \quad\left(\lambda=\max \limits_{1 \leq i \leq n} \Delta x_{i}\right) λ→0limi=1∑nf(ξi)Δxi=I(λ=1≤i≤nmaxΔxi),
则称 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 可积,记为 f ∈ R [ a , b ] f \in R[a, b] f∈R[a,b], I I I 称为 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 的定积分,记为 I = ∫ a b f ( x ) d x I=\int_{a}^{b} f(x) d x I=∫abf(x)dx .
对于定积分 I = ∫ a b f ( x ) d x I=\int_{a}^{b} f(x) d x I=∫abf(x)dx, b b b Called the upper limit of points, a a a called the lower limit of integration, x x x called the integral variable, d x dx dx called integral calculus.
二、二重积分
设 D D D 是 x O y xOy xOy A bounded closed region of a plane,函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在 D D D 定义, I I I 为实数,
If several curves will be used D D D Arbitrarily divided into small areas Δ D 1 , Δ D 2 , ⋯ , Δ D n \Delta D_{1}, \Delta D_{2}, \cdots, \Delta D_{n} ΔD1,ΔD2,⋯,ΔDn,
任取 ( ξ i , η i ) ∈ Δ D i ( i = 1 , 2 , ⋯ , n ) \left(\xi_{i}, \eta_{i}\right) \in \Delta D_{i}\ (i=1,2, \cdots, n) (ξi,ηi)∈ΔDi (i=1,2,⋯,n), Δ σ i \Delta \sigma_{i} Δσi 表示 Δ D i \Delta D_{i} ΔDi 的面积,
f ( ξ i , η i ) Δ σ i f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i} f(ξi,ηi)Δσi called the integral element,Sum the integral elements to get the following integral sum formula: ∑ i = 1 n f ( ξ i , η i ) Δ σ i \displaystyle{ \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i} }% i=1∑nf(ξi,ηi)Δσi
记 λ = max 1 ≤ i ≤ n { d i } \lambda=\max \limits_{1 \leq i \leq n}\left\{d_{i}\right\} λ=1≤i≤nmax{ di}, d i d_{i} di is a small area Δ D i \Delta D_{i} ΔDi 的直径,若总有: lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i = I \displaystyle{ \lim \limits_{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i}=I }% λ→0limi=1∑nf(ξi,ηi)Δσi=I
则称函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在有界闭区域 D D D 上可积, I I I 称为 z = f ( x , y ) z=f(x, y) z=f(x,y) 在 D D D 的二重积分,记为 ∬ D f ( x , y ) d σ \iint \limits_{D} f(x, y) d \sigma D∬f(x,y)dσ .
其中, ∬ − \iint- ∬− Double integral sign, D − D- D− 积分区域, f ( x , y ) − f(x, y)- f(x,y)−被积函数,
x , y − x \ , \ y- x , y−积分变量, f ( x , y ) d σ − f(x, y) d \sigma- f(x,y)dσ−被积表达式, d σ − d \sigma- dσ−area element (面积微元) .
若函数 f ( x , y ) f(x, y) f(x,y) 在 D D D 上可积,则 ∬ D f ( x , y ) d σ = lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i = I \iint \limits_{D} f(x, y) d \sigma=\lim \limits_{\lambda \rightarrow 0} \sum \limits_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i}=I D∬f(x,y)dσ=λ→0limi=1∑nf(ξi,ηi)Δσi=I.
About the definition“总有”的含义:
The function value of the points taken for all small regions,Both working and taking the limit result in a unique number that exists and is deterministic I I I,
且极限 I I I The value of is related to the region segmentation method and the points in the region ( ξ i , η i ) \left(\xi_{i}, \eta_{i}\right) (ξi,ηi) method is irrelevant.
三、三重积分
设 Ω \Omega Ω 是 R 3 R^{3} R3 A bounded closed region in ,函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在 Ω \Omega Ω 上定义, I I I 为实数,If the area Δ Ω 1 , Δ Ω 2 , ⋯ , Δ Ω n \Delta \Omega_{1}, \Delta \Omega_{2}, \cdots, \Delta \Omega_{n} ΔΩ1,ΔΩ2,⋯,ΔΩn,任取 ( ξ i , η i , ς i ) ∈ Δ Ω i \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \in \Delta \Omega_{i} (ξi,ηi,ςi)∈ΔΩi,
作和 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i ( Δ V i 是 Δ Ω i 的体积 ) \displaystyle{ \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta V_{i}\quad(\Delta V_{i} 是 \Delta \Omega_{i} 的体积 ) }% i=1∑nf(ξi,ηi,ςi)ΔVi(ΔVi是ΔΩi的体积),The following limits always exist and are unique(It has nothing to do with the three-dimensional division method and the point selection method):
lim i → 0 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i = I \displaystyle{ \lim _{i \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta V_{i}=I }% i→0limi=1∑nf(ξi,ηi,ςi)ΔVi=I ( 其中 λ = max 1 ≤ i ≤ n { d i } , d i \lambda=\max \limits_{1 \leq i \leq n}\left\{d_{i}\right\}, d_{i} λ=1≤i≤nmax{ di},di is a small area Δ Ω i \Delta \Omega_{i} ΔΩi 的直径 ),
则称函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在 Ω \Omega Ω 可积, I I I 称为 f f f 在 Ω \Omega Ω 的三重积分,记为: ∭ Ω f ( x , y , z ) d V ( d V − 体积元素 ) \displaystyle{ \iiint \limits_{\Omega} f(x, y, z) d V\quad(dV-体积元素) }% Ω∭f(x,y,z)dV(dV−体积元素)
若 ∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega} f(x, y, z) d V Ω∭f(x,y,z)dV 存在,则 ∭ Ω f ( x , y , z ) d x d y d z \iiint \limits_{\Omega} f(x, y, z) dxdydz Ω∭f(x,y,z)dxdydz
四、第一类曲线积分
设 f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ is defined and bounded,若 lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i λ→0limi=1∑n(ξi,ηi,ςi)ΔSi Limits exist and are unique,
This limit value is called f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ 上的第一类曲面积分,又称Quantitative function surface integral.
称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ 上可积,记作 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma}f(x,y,z)dS ∬Σf(x,y,z)dS .即:
∬ Σ f ( x , y , z ) d S = lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \iint\limits_{\Sigma}f(x,y,z)dS=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i Σ∬f(x,y,z)dS=λ→0limi=1∑n(ξi,ηi,ςi)ΔSi
否则称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ Not integrable.
The limit exists and the only meaning:The sum limit value has nothing to do with the division method of the surface and the way of picking points on the surface.
五、第一类曲面积分
设 f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ is defined and bounded,若 lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i λ→0limi=1∑n(ξi,ηi,ςi)ΔSi Limits exist and are unique,
This limit value is called f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ 上的第一类曲面积分,又称Quantitative function surface integral.
称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ 上可积,记作 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma}f(x,y,z)dS ∬Σf(x,y,z)dS .即:
∬ Σ f ( x , y , z ) d S = lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \iint\limits_{\Sigma}f(x,y,z)dS=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i Σ∬f(x,y,z)dS=λ→0limi=1∑n(ξi,ηi,ςi)ΔSi
否则称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ Not integrable.
The limit exists and the only meaning:The sum limit value has nothing to do with the division method of the surface and the way of picking points on the surface.
六、第二类曲线积分
设向量 A ⃗ ( P ) \vec{A}(P) A(P) in bounded smooth curves Γ A B \Gamma_{AB} ΓAB 上有定义,且有界( A ⃗ ( P ) \vec{A}(P) A(P) The components of are bounded functions),
T 0 ⃗ ( P ) \vec{T^0}(P) T0(P) 表示曲线 Γ A B \Gamma_{AB} ΓAB 上点 P P P The unit vector of the tangent at and with the specified direction(由 A A A 到 B B B )一致.
If the first kind of curve integral ∫ Γ A B ( A ⃗ ( P ) ⋅ T 0 ⃗ ( P ) ) d s \int_{\Gamma_{AB}}(\vec{A}(P)\cdot\vec{T^0}(P))ds ∫ΓAB(A(P)⋅T0(P))ds 存在,The value of this integral is called a vector A ⃗ ( P ) \vec{A}(P) A(P) 沿曲线 Γ A B \Gamma_{AB} ΓAB 由 A A A 到 B B B 的第二类曲线积分,又称Vector-valued function curve integral.
七、第二类曲面积分
设 Σ \Sigma Σ 是有界分片光滑曲面, A ⃗ ( x , y , z ) = { P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) } \vec{A}(x,y,z)=\{P(x,y,z),Q(x,y,z),R(x,y,z)\} A(x,y,z)={ P(x,y,z),Q(x,y,z),R(x,y,z)},
定义在 Σ \Sigma Σ 上的向量且有界 ( P , Q , R P\ , \ Q\ , \ R P , Q , R 有界), ( x , y , z ) ∈ Σ (x,y,z)\in\Sigma (x,y,z)∈Σ 处的单位法向量,
n 0 ⃗ ( x , y , z ) = { cos α , cos β , cos γ } \vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\} n0(x,y,z)={ cosα,cosβ,cosγ} 与指定的侧一致,若 ∬ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S \iint\limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS Σ∬(A⋅n0)dS 存在,
该积分值称为 A ⃗ \vec{A} A 沿曲面 Σ \Sigma Σ 指定侧的第二类曲面积分或向量值曲面积分.
八、Nicknames for various points
The first kind of curve integral is also called the curve integral of the quantitative function、对弧长的曲线积分.
Surface integrals of the first kind are also called surface integrals of quantitative functions、对面积的曲面积分.
The second kind of curve integral is also called the curve integral of vector-valued functions、对坐标的曲线积分.
The second type of surface integral is also called the surface integral of vector-valued functions、对坐标的曲面积分.
边栏推荐
猜你喜欢

What convenience does the RFID fixed asset inventory system bring to enterprises?

MagicDraw secondary development process

FPGA基础协议二:I2C读写E²PROM

Alibaba Cloud Cloud Server Firewall Settings

RFID固定资产盘点系统给企业带来哪些便利?

hicp第六天

HashSet and LinkedHashSet

剖析SGI STL空间配置器(_S_refill内存块填充函数)

One article to understand twenty kinds of switching power supply topologies

英语语法-名词性从句
随机推荐
cmd命令
How to Assemble a Registry
注解开发相关
如何避免CMDB沦为数据孤岛?
【三子棋】——玩家VS电脑(C语言实现)
The full arrangement of the 46th question in C language.Backtracking
sql注入数据库原理详解
函数(1)
HashSet和LinkedHashSet
【无标题】
Thinking about digital transformation of construction enterprises in 2022, the road to digital transformation of construction enterprises
回板后,处理器不启动,怎么办?
看完这100个客户需求,我终于知道企业文档管理的秘密
【SQL server速成之路】——身份验证及建立和管理用户账户
一文读懂二十种开关电源拓扑结构
【Flask框架②】——第一个Flask项目
C language classic practice questions (3) - "Hanoi Tower (Hanoi)"
万字详解:C语言三子棋进阶 + N子棋递归动态判断输赢(另附课设大作业参考)
电路分析:运放和三极管组成的恒流源电路
Splunk tag 的利用场景