当前位置:网站首页>Integral Special Notes - Definition of Integral
Integral Special Notes - Definition of Integral
2022-07-30 09:21:00 【The stars follow the moon】
一、定积分
f ( x ) f(x) f(x) 定义在 [ a , b ] [a, b] [a,b],any points [ a , b ] [a, b] [a,b] for the small area, 分点 a = x 0 < x 1 < x 2 < ⋯ < x n = b a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b a=x0<x1<x2<⋯<xn=b,称为 [ a , b ] [a, b] [a,b] 的一个分划.
若 ∃ I ∈ R \exists I \in \mathbf{R} ∃I∈R, 对 [ a , b ] [a, b] [a,b] of any division and ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in\left[x_{i-1}, x_{i}\right] ∀ξi∈[xi−1,xi] made and ∑ i = 1 n f ( ξ i ) Δ x i \sum \limits_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} i=1∑nf(ξi)Δxi,均有
lim λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = I ( λ = max 1 ≤ i ≤ n Δ x i ) \lim \limits_{\lambda \rightarrow 0} \sum \limits_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}=I \quad\left(\lambda=\max \limits_{1 \leq i \leq n} \Delta x_{i}\right) λ→0limi=1∑nf(ξi)Δxi=I(λ=1≤i≤nmaxΔxi),
则称 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 可积,记为 f ∈ R [ a , b ] f \in R[a, b] f∈R[a,b], I I I 称为 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 的定积分,记为 I = ∫ a b f ( x ) d x I=\int_{a}^{b} f(x) d x I=∫abf(x)dx .
对于定积分 I = ∫ a b f ( x ) d x I=\int_{a}^{b} f(x) d x I=∫abf(x)dx, b b b Called the upper limit of points, a a a called the lower limit of integration, x x x called the integral variable, d x dx dx called integral calculus.
二、二重积分
设 D D D 是 x O y xOy xOy A bounded closed region of a plane,函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在 D D D 定义, I I I 为实数,
If several curves will be used D D D Arbitrarily divided into small areas Δ D 1 , Δ D 2 , ⋯ , Δ D n \Delta D_{1}, \Delta D_{2}, \cdots, \Delta D_{n} ΔD1,ΔD2,⋯,ΔDn,
任取 ( ξ i , η i ) ∈ Δ D i ( i = 1 , 2 , ⋯ , n ) \left(\xi_{i}, \eta_{i}\right) \in \Delta D_{i}\ (i=1,2, \cdots, n) (ξi,ηi)∈ΔDi (i=1,2,⋯,n), Δ σ i \Delta \sigma_{i} Δσi 表示 Δ D i \Delta D_{i} ΔDi 的面积,
f ( ξ i , η i ) Δ σ i f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i} f(ξi,ηi)Δσi called the integral element,Sum the integral elements to get the following integral sum formula: ∑ i = 1 n f ( ξ i , η i ) Δ σ i \displaystyle{ \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i} }% i=1∑nf(ξi,ηi)Δσi
记 λ = max 1 ≤ i ≤ n { d i } \lambda=\max \limits_{1 \leq i \leq n}\left\{d_{i}\right\} λ=1≤i≤nmax{ di}, d i d_{i} di is a small area Δ D i \Delta D_{i} ΔDi 的直径,若总有: lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i = I \displaystyle{ \lim \limits_{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i}=I }% λ→0limi=1∑nf(ξi,ηi)Δσi=I
则称函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在有界闭区域 D D D 上可积, I I I 称为 z = f ( x , y ) z=f(x, y) z=f(x,y) 在 D D D 的二重积分,记为 ∬ D f ( x , y ) d σ \iint \limits_{D} f(x, y) d \sigma D∬f(x,y)dσ .
其中, ∬ − \iint- ∬− Double integral sign, D − D- D− 积分区域, f ( x , y ) − f(x, y)- f(x,y)−被积函数,
x , y − x \ , \ y- x , y−积分变量, f ( x , y ) d σ − f(x, y) d \sigma- f(x,y)dσ−被积表达式, d σ − d \sigma- dσ−area element (面积微元) .
若函数 f ( x , y ) f(x, y) f(x,y) 在 D D D 上可积,则 ∬ D f ( x , y ) d σ = lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i = I \iint \limits_{D} f(x, y) d \sigma=\lim \limits_{\lambda \rightarrow 0} \sum \limits_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i}=I D∬f(x,y)dσ=λ→0limi=1∑nf(ξi,ηi)Δσi=I.
About the definition“总有”的含义:
The function value of the points taken for all small regions,Both working and taking the limit result in a unique number that exists and is deterministic I I I,
且极限 I I I The value of is related to the region segmentation method and the points in the region ( ξ i , η i ) \left(\xi_{i}, \eta_{i}\right) (ξi,ηi) method is irrelevant.
三、三重积分
设 Ω \Omega Ω 是 R 3 R^{3} R3 A bounded closed region in ,函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在 Ω \Omega Ω 上定义, I I I 为实数,If the area Δ Ω 1 , Δ Ω 2 , ⋯ , Δ Ω n \Delta \Omega_{1}, \Delta \Omega_{2}, \cdots, \Delta \Omega_{n} ΔΩ1,ΔΩ2,⋯,ΔΩn,任取 ( ξ i , η i , ς i ) ∈ Δ Ω i \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \in \Delta \Omega_{i} (ξi,ηi,ςi)∈ΔΩi,
作和 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i ( Δ V i 是 Δ Ω i 的体积 ) \displaystyle{ \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta V_{i}\quad(\Delta V_{i} 是 \Delta \Omega_{i} 的体积 ) }% i=1∑nf(ξi,ηi,ςi)ΔVi(ΔVi是ΔΩi的体积),The following limits always exist and are unique(It has nothing to do with the three-dimensional division method and the point selection method):
lim i → 0 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i = I \displaystyle{ \lim _{i \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta V_{i}=I }% i→0limi=1∑nf(ξi,ηi,ςi)ΔVi=I ( 其中 λ = max 1 ≤ i ≤ n { d i } , d i \lambda=\max \limits_{1 \leq i \leq n}\left\{d_{i}\right\}, d_{i} λ=1≤i≤nmax{ di},di is a small area Δ Ω i \Delta \Omega_{i} ΔΩi 的直径 ),
则称函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在 Ω \Omega Ω 可积, I I I 称为 f f f 在 Ω \Omega Ω 的三重积分,记为: ∭ Ω f ( x , y , z ) d V ( d V − 体积元素 ) \displaystyle{ \iiint \limits_{\Omega} f(x, y, z) d V\quad(dV-体积元素) }% Ω∭f(x,y,z)dV(dV−体积元素)
若 ∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega} f(x, y, z) d V Ω∭f(x,y,z)dV 存在,则 ∭ Ω f ( x , y , z ) d x d y d z \iiint \limits_{\Omega} f(x, y, z) dxdydz Ω∭f(x,y,z)dxdydz
四、第一类曲线积分
设 f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ is defined and bounded,若 lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i λ→0limi=1∑n(ξi,ηi,ςi)ΔSi Limits exist and are unique,
This limit value is called f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ 上的第一类曲面积分,又称Quantitative function surface integral.
称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ 上可积,记作 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma}f(x,y,z)dS ∬Σf(x,y,z)dS .即:
∬ Σ f ( x , y , z ) d S = lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \iint\limits_{\Sigma}f(x,y,z)dS=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i Σ∬f(x,y,z)dS=λ→0limi=1∑n(ξi,ηi,ςi)ΔSi
否则称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ Not integrable.
The limit exists and the only meaning:The sum limit value has nothing to do with the division method of the surface and the way of picking points on the surface.
五、第一类曲面积分
设 f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ is defined and bounded,若 lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i λ→0limi=1∑n(ξi,ηi,ςi)ΔSi Limits exist and are unique,
This limit value is called f ( x , y , z ) f(x,y,z) f(x,y,z) on a bounded surface Σ \Sigma Σ 上的第一类曲面积分,又称Quantitative function surface integral.
称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ 上可积,记作 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma}f(x,y,z)dS ∬Σf(x,y,z)dS .即:
∬ Σ f ( x , y , z ) d S = lim λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \iint\limits_{\Sigma}f(x,y,z)dS=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i Σ∬f(x,y,z)dS=λ→0limi=1∑n(ξi,ηi,ςi)ΔSi
否则称 f ( x , y , z ) f(x,y,z) f(x,y,z) 在 Σ \Sigma Σ Not integrable.
The limit exists and the only meaning:The sum limit value has nothing to do with the division method of the surface and the way of picking points on the surface.
六、第二类曲线积分
设向量 A ⃗ ( P ) \vec{A}(P) A(P) in bounded smooth curves Γ A B \Gamma_{AB} ΓAB 上有定义,且有界( A ⃗ ( P ) \vec{A}(P) A(P) The components of are bounded functions),
T 0 ⃗ ( P ) \vec{T^0}(P) T0(P) 表示曲线 Γ A B \Gamma_{AB} ΓAB 上点 P P P The unit vector of the tangent at and with the specified direction(由 A A A 到 B B B )一致.
If the first kind of curve integral ∫ Γ A B ( A ⃗ ( P ) ⋅ T 0 ⃗ ( P ) ) d s \int_{\Gamma_{AB}}(\vec{A}(P)\cdot\vec{T^0}(P))ds ∫ΓAB(A(P)⋅T0(P))ds 存在,The value of this integral is called a vector A ⃗ ( P ) \vec{A}(P) A(P) 沿曲线 Γ A B \Gamma_{AB} ΓAB 由 A A A 到 B B B 的第二类曲线积分,又称Vector-valued function curve integral.
七、第二类曲面积分
设 Σ \Sigma Σ 是有界分片光滑曲面, A ⃗ ( x , y , z ) = { P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) } \vec{A}(x,y,z)=\{P(x,y,z),Q(x,y,z),R(x,y,z)\} A(x,y,z)={ P(x,y,z),Q(x,y,z),R(x,y,z)},
定义在 Σ \Sigma Σ 上的向量且有界 ( P , Q , R P\ , \ Q\ , \ R P , Q , R 有界), ( x , y , z ) ∈ Σ (x,y,z)\in\Sigma (x,y,z)∈Σ 处的单位法向量,
n 0 ⃗ ( x , y , z ) = { cos α , cos β , cos γ } \vec{n^0}(x,y,z)=\{\cos\alpha,\cos\beta,\cos\gamma\} n0(x,y,z)={ cosα,cosβ,cosγ} 与指定的侧一致,若 ∬ Σ ( A ⃗ ⋅ n 0 ⃗ ) d S \iint\limits_{\Sigma}(\vec{A}\cdot\vec{n^0})dS Σ∬(A⋅n0)dS 存在,
该积分值称为 A ⃗ \vec{A} A 沿曲面 Σ \Sigma Σ 指定侧的第二类曲面积分或向量值曲面积分.
八、Nicknames for various points
The first kind of curve integral is also called the curve integral of the quantitative function、对弧长的曲线积分.
Surface integrals of the first kind are also called surface integrals of quantitative functions、对面积的曲面积分.
The second kind of curve integral is also called the curve integral of vector-valued functions、对坐标的曲线积分.
The second type of surface integral is also called the surface integral of vector-valued functions、对坐标的曲面积分.
边栏推荐
猜你喜欢
typescript5 - compile and install ts code
浅论各种调试接口(JTAG、SWD、RDI、Jlink、Ulink、STlink)的区别
【科普向】5G核心网架构和关键技术
C language classic practice questions (3) - "Hanoi Tower (Hanoi)"
hcip第八天
FPGA基础协议二:I2C读写E²PROM
[Fun BLDC series with zero basics] Taking GD32F30x as an example, the timer related functions are explained in detail
SwiftUI SQLite 教程之 构建App本地数据库实现创建、读取、更新和删除(教程含完成项目源码)
一文读懂二十种开关电源拓扑结构
opencv可以有多有趣
随机推荐
【蓝桥杯选拔赛真题45】Scratch猫鼠游戏 少儿编程scratch蓝桥杯选拔赛真题讲解
Thinking about digital transformation of construction enterprises in 2022, the road to digital transformation of construction enterprises
基于SSM开发实现校园疫情防控管理系统
看完这100个客户需求,我终于知道企业文档管理的秘密
Lenovo Notebook How to Change Windows 10 Boot Logo Icon
基于JSP实现校园二手交易平台
积分简明笔记-第一类曲线积分的类型
typescript1 - what is typescript
电源完整性基础知识
typescript4 - installs a toolkit for compiling ts
How to use Jmeter to carry out high concurrency in scenarios such as panic buying and seckill?
Flutter 环境变量配置和flutter doctor中的错误解决
深入浅出零钱兑换问题——背包问题的套壳
leetcode力扣——一篇文章解决多数之和问题
The FPGA based protocol 2: the I2C read and write E squared PROM
leetcode-990:等式方程的可满足性
基于SSM实现个性化健康饮食推荐系统
EMC过不了?都是PCB工程师的锅?
npm指令
积分简明笔记-第二类曲线积分的类型