当前位置:网站首页>潘多拉 IOT 开发板学习(RT-Thread)—— 实验4 蜂鸣器+马达实验【按键外部中断】(学习笔记)

潘多拉 IOT 开发板学习(RT-Thread)—— 实验4 蜂鸣器+马达实验【按键外部中断】(学习笔记)

2022-07-05 00:41:00 小辉_Super

本文代码参考 RT-Thread 官方 BSP

实验功能

例程源码:(main.c)

该实验实现的功能:4 个按键对应不同的功能(控制电机左转或右转,控制蜂鸣器响灭),其中 3 个按键是通过外部中断的方式检测的(另外的一个按键通过轮询检测),大部分操作代码在中断服务(回调)函数中,电机控制和蜂鸣器控制的代码很简单,全是 GPIO 写操作,就不单独分析了。

/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-08-23 balanceTWK first implementation */

#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>

#define DBG_TAG "main"
#define DBG_LVL DBG_LOG
#include <rtdbg.h>

enum
{
    
    MOTOR_STOP,
    MOTOR_LEFT,
    MOTOR_RIGHT
};

/* 电机控制 */
void motor_ctrl(rt_uint8_t turn)
{
    
    if (turn == MOTOR_STOP)
    {
    
        rt_pin_write(PIN_MOTOR_A, PIN_LOW);
        rt_pin_write(PIN_MOTOR_B, PIN_LOW);
    }
    else if (turn == MOTOR_LEFT)
    {
    
        rt_pin_write(PIN_MOTOR_A, PIN_LOW);
        rt_pin_write(PIN_MOTOR_B, PIN_HIGH);
    }
    else if (turn == MOTOR_RIGHT)
    {
    
        rt_pin_write(PIN_MOTOR_A, PIN_HIGH);
        rt_pin_write(PIN_MOTOR_B, PIN_LOW);
    }
    else
    {
    
        LOG_D("err parameter ! Please enter 0-2.");
    }
}

void beep_ctrl(rt_uint8_t on)
{
    
    if (on)
    {
    
        rt_pin_write(PIN_BEEP, PIN_HIGH);
    }
    else
    {
    
        rt_pin_write(PIN_BEEP, PIN_LOW);
    }
}

/* 中断回调 */
void irq_callback(void *args)
{
    
    rt_uint32_t sign = (rt_uint32_t)args;
    switch (sign)
    {
    
    case PIN_KEY0:
        motor_ctrl(MOTOR_LEFT);
        LOG_D("KEY0 interrupt. motor turn left.");
        break;
    case PIN_KEY1:
        motor_ctrl(MOTOR_RIGHT);
        LOG_D("KEY1 interrupt. motor turn right.");
        break;
    case PIN_KEY2:
        motor_ctrl(MOTOR_STOP);
        LOG_D("KEY2 interrupt. motor stop.");
        break;
    default:
        LOG_E("error sign= %d !", sign);
        break;
    }
}

int main(void)
{
    
    unsigned int count = 1;

    /* 设置按键引脚为输入模式 */
    rt_pin_mode(PIN_KEY0, PIN_MODE_INPUT_PULLUP);
    rt_pin_mode(PIN_KEY1, PIN_MODE_INPUT_PULLUP);
    rt_pin_mode(PIN_KEY2, PIN_MODE_INPUT_PULLUP);
    rt_pin_mode(PIN_WK_UP, PIN_MODE_INPUT_PULLDOWN);

    /* 设置电机控制引脚为输入模式 */
    rt_pin_mode(PIN_MOTOR_A, PIN_MODE_OUTPUT);
    rt_pin_mode(PIN_MOTOR_B, PIN_MODE_OUTPUT);

    /* 设置蜂鸣器引脚为输出模式 */
    rt_pin_mode(PIN_BEEP, PIN_MODE_OUTPUT);

    /* 设置按键中断模式与中断回调函数 */
    rt_pin_attach_irq(PIN_KEY0, PIN_IRQ_MODE_FALLING, irq_callback, (void *)PIN_KEY0);
    rt_pin_attach_irq(PIN_KEY1, PIN_IRQ_MODE_FALLING, irq_callback, (void *)PIN_KEY1);
    rt_pin_attach_irq(PIN_KEY2, PIN_IRQ_MODE_FALLING, irq_callback, (void *)PIN_KEY2);

    /* 使能中断 */
    rt_pin_irq_enable(PIN_KEY0, PIN_IRQ_ENABLE);
    rt_pin_irq_enable(PIN_KEY1, PIN_IRQ_ENABLE);
    rt_pin_irq_enable(PIN_KEY2, PIN_IRQ_ENABLE);

    while (count > 0)
    {
    
        if (rt_pin_read(PIN_WK_UP) == PIN_HIGH)
        {
    
            rt_thread_mdelay(50);
            if (rt_pin_read(PIN_WK_UP) == PIN_HIGH)
            {
    
                LOG_D("WK_UP pressed. beep on.");
                beep_ctrl(1);
            }
        }
        else
        {
    
            beep_ctrl(0);
        }
        rt_thread_mdelay(10);
        count++;
    }
    return 0;
}

代码剖析

rt_pin_mode()

该函数的作用是 GPIO Pin 的初始化,定义为

/* RT-Thread Hardware PIN APIs */
void rt_pin_mode(rt_base_t pin, rt_base_t mode)
{
    
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    _hw_pin.ops->pin_mode(&_hw_pin.parent, pin, mode);
}

参数 pin 是一个 rt_base_t 变量(long),下面的 GET_PIN() 是 STM32 的 pin 值宏定义,第一个参数填大写字母,第二个参数填数字。

#define GET_PIN(PORTx,PIN) (rt_base_t)((16 * ( ((rt_base_t)__STM32_PORT(PORTx) - (rt_base_t)GPIOA)/(0x0400UL) )) + PIN)

#define __STM32_PORT(port) GPIO##port // ## 是字符连接符,假如 port 为 A,则表示 GPIOA

例如实验中的 #define PIN_LED_R GET_PIN(E, 7) ,表示 GPIOE GPIO_Pin7

目前 RT-Thread 支持的引脚工作模式包括:

#define PIN_MODE_OUTPUT 0x00 /* 输出 */
#define PIN_MODE_INPUT 0x01 /* 输入 */
#define PIN_MODE_INPUT_PULLUP 0x02 /* 上拉输入 */
#define PIN_MODE_INPUT_PULLDOWN 0x03 /* 下拉输入 */
#define PIN_MODE_OUTPUT_OD 0x04 /* 开漏输出 */

在 bsp 的 drv_gpio.c 文件中,有底层 GPIO 驱动,下面是 STM32 的 GPIO 模式设置的驱动函数(大家应该很熟悉,就是用 HAL 库写的 GPIO 初始化代码)

static void stm32_pin_mode(rt_device_t dev, rt_base_t pin, rt_base_t mode)
{
    
    const struct pin_index *index;
    GPIO_InitTypeDef GPIO_InitStruct;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
    
        return;
    }

    /* Configure GPIO_InitStructure */
    GPIO_InitStruct.Pin = index->pin;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;

    if (mode == PIN_MODE_OUTPUT)
    {
    
        /* output setting */
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
    }
    else if (mode == PIN_MODE_INPUT)
    {
    
        /* input setting: not pull. */
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
    }
    else if (mode == PIN_MODE_INPUT_PULLUP)
    {
    
        /* input setting: pull up. */
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_PULLUP;
    }
    else if (mode == PIN_MODE_INPUT_PULLDOWN)
    {
    
        /* input setting: pull down. */
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_PULLDOWN;
    }
    else if (mode == PIN_MODE_OUTPUT_OD)
    {
    
        /* output setting: od. */
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
    }

    HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
}

rt_pin_attach_irq()

这是 RT-Thread 中断绑定(注册)函数,它会调用当前平台驱动中的相应函数。

rt_err_t rt_pin_attach_irq(rt_int32_t pin, rt_uint32_t mode,
                             void (*hdr)(void *args), void  *args)
{
    
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    if(_hw_pin.ops->pin_attach_irq)
    {
    
        return _hw_pin.ops->pin_attach_irq(&_hw_pin.parent, pin, mode, hdr, args);
    }
    return RT_ENOSYS;
}

bsp 驱动(drv_gpio.c)中定义了 STM32 的中断注册函数 stm32_pin_attach_irq()

static rt_err_t stm32_pin_attach_irq(struct rt_device *device, rt_int32_t pin,
                                     rt_uint32_t mode, void (*hdr)(void *args), void *args)
{
    
    const struct pin_index *index;
    rt_base_t level;
    rt_int32_t irqindex = -1;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
    
        return RT_ENOSYS;
    }
    irqindex = bit2bitno(index->pin);
    if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
    {
    
        return RT_ENOSYS;
    }

    level = rt_hw_interrupt_disable();
    if (pin_irq_hdr_tab[irqindex].pin == pin &&
            pin_irq_hdr_tab[irqindex].hdr == hdr &&
            pin_irq_hdr_tab[irqindex].mode == mode &&
            pin_irq_hdr_tab[irqindex].args == args)
    {
    
        rt_hw_interrupt_enable(level);
        return RT_EOK;
    }
    if (pin_irq_hdr_tab[irqindex].pin != -1)
    {
    
        rt_hw_interrupt_enable(level);
        return RT_EBUSY;
    }
    pin_irq_hdr_tab[irqindex].pin = pin;
    pin_irq_hdr_tab[irqindex].hdr = hdr;
    pin_irq_hdr_tab[irqindex].mode = mode;
    pin_irq_hdr_tab[irqindex].args = args;
    rt_hw_interrupt_enable(level);

    return RT_EOK;
}

attach 函数的原理很简单,就是将当前中断信息存放到驱动代码中的一个中断表中,中断表的结构体定义为:

struct rt_pin_irq_hdr
{
    
    rt_int16_t        pin;
    rt_uint16_t       mode;
    void (*hdr)(void *args);  // 中断回调函数
    void             *args;
};

rt_pin_irq_enable()

这是 RT-Thread 内核的 pin 中断使能函数,实际操作的是平台驱动对应函数,

rt_err_t rt_pin_irq_enable(rt_base_t pin, rt_uint32_t enabled)
{
    
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    if(_hw_pin.ops->pin_irq_enable)
    {
    
        return _hw_pin.ops->pin_irq_enable(&_hw_pin.parent, pin, enabled);
    }
    return RT_ENOSYS;
}

STM32 平台驱动中的中断使能函数如下,代码量还是很大的(HAL 库中外部中断的相关配置,由于要考虑不同参数选项,所以代码量大):

static rt_err_t stm32_pin_irq_enable(struct rt_device *device, rt_base_t pin,
                                     rt_uint32_t enabled)
{
    
    const struct pin_index *index;
    const struct pin_irq_map *irqmap;
    rt_base_t level;
    rt_int32_t irqindex = -1;
    GPIO_InitTypeDef GPIO_InitStruct;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
    
        return RT_ENOSYS;
    }

    if (enabled == PIN_IRQ_ENABLE)
    {
    
        irqindex = bit2bitno(index->pin);
        if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
        {
    
            return RT_ENOSYS;
        }

        level = rt_hw_interrupt_disable();

        if (pin_irq_hdr_tab[irqindex].pin == -1)
        {
    
            rt_hw_interrupt_enable(level);
            return RT_ENOSYS;
        }

        irqmap = &pin_irq_map[irqindex];

        /* Configure GPIO_InitStructure */
        GPIO_InitStruct.Pin = index->pin;        
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
        switch (pin_irq_hdr_tab[irqindex].mode)
        {
    
        case PIN_IRQ_MODE_RISING:
            GPIO_InitStruct.Pull = GPIO_PULLDOWN;
            GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
            break;
        case PIN_IRQ_MODE_FALLING:
            GPIO_InitStruct.Pull = GPIO_PULLUP;
            GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
            break;
        case PIN_IRQ_MODE_RISING_FALLING:
            GPIO_InitStruct.Pull = GPIO_NOPULL;
            GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
            break;
        }
        HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);

        HAL_NVIC_SetPriority(irqmap->irqno, 5, 0);
        HAL_NVIC_EnableIRQ(irqmap->irqno);
        pin_irq_enable_mask |= irqmap->pinbit;

        rt_hw_interrupt_enable(level);
    }
    else if (enabled == PIN_IRQ_DISABLE)
    {
    
        irqmap = get_pin_irq_map(index->pin);
        if (irqmap == RT_NULL)
        {
    
            return RT_ENOSYS;
        }

        level = rt_hw_interrupt_disable();

        HAL_GPIO_DeInit(index->gpio, index->pin);

        pin_irq_enable_mask &= ~irqmap->pinbit;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
        if (( irqmap->pinbit>=GPIO_PIN_0 )&&( irqmap->pinbit<=GPIO_PIN_1 ))
        {
    
            if(!(pin_irq_enable_mask&(GPIO_PIN_0|GPIO_PIN_1)))
            {
        
                HAL_NVIC_DisableIRQ(irqmap->irqno);
            }
        }
        else if (( irqmap->pinbit>=GPIO_PIN_2 )&&( irqmap->pinbit<=GPIO_PIN_3 ))
        {
    
            if(!(pin_irq_enable_mask&(GPIO_PIN_2|GPIO_PIN_3)))
            {
        
                HAL_NVIC_DisableIRQ(irqmap->irqno);
            }
        }
        else if (( irqmap->pinbit>=GPIO_PIN_4 )&&( irqmap->pinbit<=GPIO_PIN_15 ))
        {
    
            if(!(pin_irq_enable_mask&(GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|
                                      GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)))
            {
        
                HAL_NVIC_DisableIRQ(irqmap->irqno);
            }
        }    
        else
        {
    
            HAL_NVIC_DisableIRQ(irqmap->irqno);
        }         
#else 
        if (( irqmap->pinbit>=GPIO_PIN_5 )&&( irqmap->pinbit<=GPIO_PIN_9 ))
        {
    
            if(!(pin_irq_enable_mask&(GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9)))
            {
        
                HAL_NVIC_DisableIRQ(irqmap->irqno);
            }
        }
        else if (( irqmap->pinbit>=GPIO_PIN_10 )&&( irqmap->pinbit<=GPIO_PIN_15 ))
        {
    
            if(!(pin_irq_enable_mask&(GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)))
            {
        
                HAL_NVIC_DisableIRQ(irqmap->irqno);
            }
        }
        else
        {
    
            HAL_NVIC_DisableIRQ(irqmap->irqno);
        }        
#endif 
        rt_hw_interrupt_enable(level);  
    }
    else
    {
    
        return -RT_ENOSYS;
    }

    return RT_EOK;
}

中断处理函数

中断处理函数已经在 main.c 中定义,这里不展示了。

当外部中断触发时,会触发 HAL库的中断函数 HAL_GPIO_EXTI_Callback(),而 STM32 bsp 中在该函数里运行了pin_irq_hdr(bit2bitno(GPIO_Pin));,该函数会根据中断注册时分配的中断号来调用相应的回调函数。

HAL_GPIO_EXTI_Callback()

#if defined(SOC_SERIES_STM32G0)
void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin)
{
    
    pin_irq_hdr(bit2bitno(GPIO_Pin));
}

void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin)
{
    
    pin_irq_hdr(bit2bitno(GPIO_Pin));
}
#else
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
    
    pin_irq_hdr(bit2bitno(GPIO_Pin));
}
#endif

pin_irq_hdr()

rt_inline void pin_irq_hdr(int irqno)
{
    
    if (pin_irq_hdr_tab[irqno].hdr)
    {
    
        pin_irq_hdr_tab[irqno].hdr(pin_irq_hdr_tab[irqno].args);
    }
}

rt_pin_read()

GPIO 读函数,下面是函数的定义:

int  rt_pin_read(rt_base_t pin)
{
    
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    return _hw_pin.ops->pin_read(&_hw_pin.parent, pin);
}

和 GPIO 模式配置函数类似,它会调用底层驱动里对应的函数,该底层函数是通过 HAL_GPIO_ReadPin() 来获取 GPIO 的电平。

static int stm32_pin_read(rt_device_t dev, rt_base_t pin)
{
    
    int value;
    const struct pin_index *index;

    value = PIN_LOW;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
    
        return value;
    }

    value = HAL_GPIO_ReadPin(index->gpio, index->pin);

    return value;
}

rt_thread_mdelay()

这是 RT-Thread 的毫秒级延时函数,定义如下:

rt_err_t rt_thread_mdelay(rt_int32_t ms)
{
    
    rt_tick_t tick;

	// 获取需要的时钟节拍
    tick = rt_tick_from_millisecond(ms);
	
	// 阻塞相应的节拍时间
    return rt_thread_sleep(tick);
}

rt_tick_from_millisecond()


/** * 算出 ms 对应的时钟节拍数 * * * @param ms the specified millisecond * - Negative Number wait forever * - Zero not wait * - Max 0x7fffffff * * @return the calculated tick */
rt_tick_t rt_tick_from_millisecond(rt_int32_t ms)
{
    
    rt_tick_t tick;

    if (ms < 0)
    {
    
        tick = (rt_tick_t)RT_WAITING_FOREVER;  // -1 
    }
    else
    {
    
    	// 将“每秒节拍数” / 1000 * ms,算出对应的秒节拍数
        tick = RT_TICK_PER_SECOND * (ms / 1000);
		
		// 加上小于 1000ms 部分的节拍数
        tick += (RT_TICK_PER_SECOND * (ms % 1000) + 999) / 1000;
    }
    
    /* return the calculated tick */
    return tick;
}

rt_thread_sleep()

线程睡眠(挂起)函数,参数是系统节拍数:

/** * 该函数能让当前线程挂起一段时间(由 tick 决定) * * @param tick the sleep ticks * * @return RT_EOK */
rt_err_t rt_thread_sleep(rt_tick_t tick)
{
    
    register rt_base_t temp;
    struct rt_thread *thread;

    /* set to current thread */
    thread = rt_thread_self();
    RT_ASSERT(thread != RT_NULL);
    RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);

    /* disable interrupt */
    temp = rt_hw_interrupt_disable();

    /* suspend thread */
    rt_thread_suspend(thread);

    /* reset the timeout of thread timer and start it */
    rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &tick);
    rt_timer_start(&(thread->thread_timer));

    /* enable interrupt */
    rt_hw_interrupt_enable(temp);

    rt_schedule();

    /* clear error number of this thread to RT_EOK */
    if (thread->error == -RT_ETIMEOUT)
        thread->error = RT_EOK;

    return RT_EOK;
}

LOG_D()

本实验中,我们可以将 LOG_D() 视为 rt_kprintf()

#define dbg_log_line(lvl, color_n, fmt, ...) \ do \ {
       \ _DBG_LOG_HDR(lvl, color_n); \ rt_kprintf(fmt, ##__VA_ARGS__); \ _DBG_LOG_X_END; \ } \ while (0)

LOG_D 是 RT-Thread 内核里的一个日志打印函数,详情可见:《RT-Thread 文档中心——ulog 日志》

RT-Thread 的日志 API 包括:

在这里插入图片描述

rt_pin_write()

GPIO 写函数,下面是函数的定义,

void rt_pin_write(rt_base_t pin, rt_base_t value)
{
    
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    _hw_pin.ops->pin_write(&_hw_pin.parent, pin, value);
}

和 GPIO 模式配置函数类似,它会调用底层驱动里对应的函数,该底层函数是通过 HAL_GPIO_WritePin() 来完成 GPIO Pin 的修改。

static void stm32_pin_write(rt_device_t dev, rt_base_t pin, rt_base_t value)
{
    
    const struct pin_index *index;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
    
        return;
    }

    HAL_GPIO_WritePin(index->gpio, index->pin, (GPIO_PinState)value);
}
原网站

版权声明
本文为[小辉_Super]所创,转载请带上原文链接,感谢
https://xiaohuisuper.blog.csdn.net/article/details/125562709