当前位置:网站首页>[combinatorics] brief introduction to generating function (definition of generating function | Newton binomial coefficient | commonly used generating function | correlation with constant | correlation
[combinatorics] brief introduction to generating function (definition of generating function | Newton binomial coefficient | commonly used generating function | correlation with constant | correlation
2022-07-03 03:24:00 【Programmer community】
List of articles
- One . Generating function ( The generating function ) The definition of
- 1. Generating function definition
- ( 1 ) Definition of generating function
- ( 2 ) Formal power series ( Reference resources )
- 2. Generating function Example
- ( 1 ) Generating function Example 1 (
a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm) )
- ( 2 ) Generating function Example 2 (
{
k
n
}
\{k^n\}
{ kn} )
- ( 1 ) Generating function Example 1 (
- 2. Newton binomial
- ( 1 ) Newton binomial coefficient
- ( 2 ) Newton binomial Theorem
- Two . Commonly used Generating function ( important )
- 1. Generating functions related to constants
- ( 1 )
{
1
n
}
\{1^n\}
{ 1n} Of Generating function
- ( 2 )
{
(
−
1
)
n
}
\{(-1)^n\}
{ (−1)n} Of Generating function
- ( 3 )
{
k
n
}
\{k^n\}
{ kn} (
k
k
k As a positive integer ) Of Generating function
- ( 1 )
- 2. And Binomial coefficient Related generating functions
- ( 1 )
{
(
m
n
)
}
\{\dbinom{m}{n}\}
{ (nm)} Of Generating function
- ( 1 )
- 3. And Combinatorial number Related generating functions
- ( 1 )
{
(
m
+
n
−
1
n
)
}
\{\dbinom{m+n-1}{n}\}
{ (nm+n−1)} Of Generating function
- ( 2 )
{
(
−
1
)
n
(
m
+
n
−
1
n
)
}
\{(-1)^n \dbinom{m+n-1}{n}\}
{ (−1)n(nm+n−1)} Of Generating function
- ( 3 )
{
(
n
+
1
1
)
}
\{ \dbinom{n+1}{1}\}
{ (1n+1)} Of Generating function
- ( 1 )
One . Generating function ( The generating function ) The definition of
1. Generating function definition
( 1 ) Definition of generating function
Generating function definition :
- 1. Assumptions : set up
a
0
,
a
1
,
⋯
,
a
n
a_0 , a_1 , \cdots , a_n
a0,a1,⋯,an It's a sequence ;
- 2. Formal power series : Use The The sequence do Formal power series
A
(
x
)
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
+
⋯
A(x) = a_0 + a_1x +a_2x^2 + \cdots + a_nx^n + \cdots
A(x)=a0+a1x+a2x2+⋯+anxn+⋯
- 3. Generating function : Call the above
A
(
x
)
A(x)
a
0
,
a
1
,
⋯
,
a
n
a_0 , a_1 , \cdots , a_n
a0,a1,⋯,an Of Generating function ;
A(x) yes The sequence
( 2 ) Formal power series ( Reference resources )
Formal power series :
- 1. Power series : Mathematical analysis in Important concepts , stay Exponential in every particular Are all And Series term Serial number
n
n
(
x
−
a
)
(x-a)
(x−a) Of
n
n
n Power (
n
n
n It's from
0
0
0 Integer to start counting ,
a
a
a Constant ) ;
- Use of power series : Its By As Basic content Applied to Real variable function , Complex functions , And so on in ;
n Corresponding With Constant times
- 2. Formal power series : yes In Mathematics Of Lottery concept , from Power series in Pulled out Of Algebraic objects ; Formal power series and from polynomial in Stripped out of Polynomial rings similar , however Its allow Infinite polynomial factor Add up , But not like Power series commonly requirement Research Convergence or not and Is there any definite Value ;
- ① Assumptions : set up
x
x
x It's a symbol ,
a
i
(
i
=
0
,
1
,
2
,
⋯
)
a_i ( i = 0 , 1 , 2 , \cdots )
ai(i=0,1,2,⋯) It's a real number ;
- ② Undetermined element Formal power series :
A
(
x
)
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
+
⋯
=
∑
n
=
0
∞
A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots = \sum_{n=0}^{\infty}
A(x)=a0+a1x+a2x2+⋯+anxn+⋯=n=0∑∞ be called
x
x
x Indeterminate element of Of One Formal power series ;
- ① Assumptions : set up
- 3. Research focus : Formal power series in ,
x
x
x never No specific value is specified , No concern convergence or Divergence , The focus is on its Coefficient sequence
a
0
,
a
1
,
⋯
,
a
n
a_0 , a_1 , \cdots , a_n
a0,a1,⋯,an , Study formal power series Absolutely. It comes down to Discuss These coefficient sequences ;
2. Generating function Example
( 1 ) Generating function Example 1 ( a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm) )
Example topic : set up
a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm) ,
m
m
m As a positive integer , Find the sequence
{
a
n
}
\{a_n\}
{ an} The generating function of
A
(
x
)
A(x)
A(x) ;
Explain :
① List generation functions :
A
(
x
)
=
(
m
0
)
x
0
+
(
m
1
)
x
1
+
(
m
2
)
x
2
+
⋯
+
(
m
n
)
x
n
A(x) = \dbinom{m}{0}x^0 + \dbinom{m}{1}x^1 + \dbinom{m}{2}x^2 + \cdots + \dbinom{m}{n}x^n
A(x)=(0m)x0+(1m)x1+(2m)x2+⋯+(nm)xn
② List their cumulative generating functions :
A
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
A(x) = \sum_{n=0}^\infty \dbinom{m}{n}x^n
A(x)=n=0∑∞(nm)xn
③ When
n
n
n Greater than
m
m
m when , from
m
m
m in take
n
n
n , namely
(
m
n
)
\dbinom{m}{n}
(nm) by 0 , So you can Direct calculation from
n
=
0
n=0
n=0 To
n
=
m
n=m
n=m Value , namely Get the following steps :
A
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
=
∑
n
=
0
m
(
m
n
)
x
n
A(x) = \sum_{n=0}^\infty \dbinom{m}{n}x^n = \sum_{n=0}^m \dbinom{m}{n}x^n
A(x)=n=0∑∞(nm)xn=n=0∑m(nm)xn
④ according to binomial theorem Inference content ( set up
n
n
n It's a positive integer. , For everything
x
x
x Yes
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
(1+x)^n=\sum_{k=0}^n\dbinom{n}{k}x^k
(1+x)n=∑k=0n(kn)xk ) You can get
A
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
=
∑
n
=
0
m
(
m
n
)
x
n
=
(
1
+
x
)
m
A(x) = \sum_{n=0}^\infty \dbinom{m}{n}x^n = \sum_{n=0}^m \dbinom{m}{n}x^n = (1 + x)^m
A(x)=n=0∑∞(nm)xn=n=0∑m(nm)xn=(1+x)m
⑤ The sequence
a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm) (
m
m
m As a positive integer ) , Of Generating function by :
A
(
x
)
=
(
1
+
x
)
m
A(x) = (1 + x)^m
A(x)=(1+x)m
Be careful : Generating function be subordinate to A sequence of , When generating functions , First, explain the sequence , To specify The sequence Of Generating function yes Some function ;
( 2 ) Generating function Example 2 ( {
k
n
}
\{k^n\}
{ kn} )
subject : Given Positive integer
k
k
k , seek
{
k
n
}
\{k^n\}
{ kn} The generating function of ;
① Write the generating function : take
{
k
n
}
\{k^n\}
{ kn} As a formal power series coefficient , You can get as follows Geometric series , When
x
x
x When I was young enough , It converges to
1
1
−
k
x
\frac{1}{1-kx}
1−kx1 ;
A
(
x
)
=
k
0
x
0
+
k
1
x
1
+
k
2
x
2
+
k
3
x
3
+
⋯
=
1
1
−
k
x
A(x) = k^0x^0 + k^1x^1 + k^2x^2 + k^3x^3 + \cdots = \frac{1}{1-kx}
A(x)=k0x0+k1x1+k2x2+k3x3+⋯=1−kx1
②
{
k
n
}
\{k^n\}
{ kn} In sequence Generating function by :
A
(
x
)
=
1
1
−
k
x
A(x) = \frac{1}{1-kx}
A(x)=1−kx1
2. Newton binomial
( 1 ) Newton binomial coefficient
Newton binomial coefficient : Expansion of combinatorial number ,
C
(
m
,
n
)
C(m, n)
C(m,n) The previous item is no longer greater than or equal to
n
n
n The number of the , But any real number ;
- 1. Conditions : arbitrarily The set of real Numbers
r
r
n
n
n ;
r , and Integers
- 2. The formula :
(
r
n
)
=
{
0
,
n
<
0
1
,
n
=
0
r
(
r
−
1
)
⋯
(
r
−
n
+
1
)
n
!
,
n
>
0
\dbinom{r}{n} = \begin{cases} 0, & n < 0 \\ 1, & n=0 \\ \cfrac{r(r-1)\cdots(r-n+1)}{n!}, & n>0 \end{cases}
(nr)=⎩⎪⎪⎨⎪⎪⎧0,1,n!r(r−1)⋯(r−n+1),n<0n=0n>0
- 3. Conclusion : The
(
r
n
)
\dbinom{r}{n}
(nr) No, Combined meaning , It's just mark , be called Newton's binomial coefficient ;
Select the question :
- Non repeatable elements , Orderly selection , Corresponding Arrangement of sets ;
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \dfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n!
- Non repeatable elements , Unordered selection , Corresponding A combination of sets ;
C
(
n
,
r
)
=
P
(
n
,
r
)
r
!
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!}
C(n,r)=r!P(n,r)=r!(n−r)!n!
- Repeatable elements , Orderly selection , Corresponding Arrangement of multiple sets ;
whole
row
Column
=
n
!
n
1
!
n
2
!
⋯
n
k
!
Full Permutation = \cfrac{n!}{n_1! n_2! \cdots n_k!}
whole row Column =n1!n2!⋯nk!n! , Incomplete permutation
k
r
,
r
≤
n
i
k^r , \ \ r\leq n_i
kr, r≤ni
- Repeatable elements , Unordered selection , Corresponding Combination of multiple sets ;
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
( 2 ) Newton binomial Theorem
Newton's binomial theorem :
- 1. Conditions :
α
\alpha
x
,
y
x , y
x,y , also
∣
x
y
∣
<
1
\left| \frac{x}{y} \right| < 1
∣∣∣yx∣∣∣<1 ;
α by The set of real Numbers , For everything
- 2. Conclusion :
(
x
+
y
)
α
=
∑
n
=
0
∞
(
α
n
)
x
α
y
α
−
n
( x + y ) ^ \alpha = \sum^{\infty}_{n=0}\dbinom{\alpha}{n}x^\alpha y^{\alpha - n}
(
α
n
)
=
α
(
α
−
1
)
⋯
(
α
−
n
+
1
)
n
!
\dbinom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}
(nα)=n!α(α−1)⋯(α−n+1)
(x+y)α=n=0∑∞(nα)xαyα−n among
- 3. And binomial theorem Relationship : Newton's binomial theorem yes binomial theorem Of Extension , Binomial theorem is Newton's binomial theorem Of special case ;
- ① When
α
=
m
\alpha = m
α=m , And
m
m
n
>
m
n > m
n>m when ,
(
m
n
)
=
0
\dbinom{m}{n}=0
(nm)=0 , So just think about
n
<
m
n<m
n<m The situation of , here Newton's binomial theorem become binomial theorem :
(
x
+
y
)
m
=
∑
n
=
0
m
(
m
n
)
x
m
y
m
−
n
( x + y ) ^ m = \sum^{m}_{n=0}\dbinom{m}{n}x^m y^{m - n}
(x+y)m=n=0∑m(nm)xmym−n
(
1
+
x
)
m
=
∑
n
=
0
m
(
m
n
)
x
m
y
m
−
n
( 1 + x ) ^ m = \sum^{m}_{n=0}\dbinom{m}{n}x^m y^{m - n}
(1+x)m=n=0∑m(nm)xmym−n
m When it is a positive integer , When
- ① When
Two . Commonly used Generating function ( important )
1. Generating functions related to constants
( 1 ) {
1
n
}
\{1^n\}
{ 1n} Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
1
n
a_n = 1^n
an=1n ;
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} x^n \\ & = \frac{1}{1-x} \end{aligned}
A(x)=n=0∑∞xn=1−x1
( 2 ) {
(
−
1
)
n
}
\{(-1)^n\}
{ (−1)n} Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
−
1
)
n
a_n = (-1)^n
an=(−1)n ;
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
x
n
=
1
1
+
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n x^n \\ & = \frac{1}{1+x} \end{aligned}
A(x)=n=0∑∞(−1)nxn=1+x1
( 3 ) {
k
n
}
\{k^n\}
{ kn} (
k
k
k As a positive integer ) Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
k
n
a_n = k^n
an=kn ,
k
k
k As a positive integer ;
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
k
n
x
n
=
1
1
−
k
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} k^n x^n \\ & = \frac{1}{1-kx} \end{aligned}
A(x)=n=0∑∞knxn=1−kx1
2. And Binomial coefficient Related generating functions
( 1 ) {
(
m
n
)
}
\{\dbinom{m}{n}\}
{ (nm)} Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm)
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
=
(
1
+
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m}{n} x^n \\ & = ( 1 + x ) ^m \end{aligned}
A(x)=n=0∑∞(nm)xn=(1+x)m
3. And Combinatorial number Related generating functions
( 1 ) {
(
m
+
n
−
1
n
)
}
\{\dbinom{m+n-1}{n}\}
{ (nm+n−1)} Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
m
+
n
−
1
n
)
a_n = \dbinom{m+n-1}{n}
an=(nm+n−1) ,
m
,
n
m,n
m,n As a positive integer ;
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
(
m
+
n
−
1
n
)
x
n
=
1
(
1
−
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m+n-1}{n} x^n \\ & = \frac{1}{ {(1-x)}^m} \end{aligned}
A(x)=n=0∑∞(nm+n−1)xn=(1−x)m1
( 2 ) {
(
−
1
)
n
(
m
+
n
−
1
n
)
}
\{(-1)^n \dbinom{m+n-1}{n}\}
{ (−1)n(nm+n−1)} Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
−
1
)
n
(
m
+
n
−
1
n
)
a_n = (-1)^n \dbinom{m+n-1}{n}
an=(−1)n(nm+n−1) ,
m
,
n
m,n
m,n As a positive integer ;
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
m
+
n
−
1
n
)
x
n
=
1
(
1
+
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n \dbinom{m+n-1}{n} x^n \\ & = \frac{1}{ {(1+x)}^m} \end{aligned}
A(x)=n=0∑∞(−1)n(nm+n−1)xn=(1+x)m1
( 3 ) {
(
n
+
1
1
)
}
\{ \dbinom{n+1}{1}\}
{ (1n+1)} Of Generating function
Common generating functions :
- 1. Formal power series ( The sequence ) :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
n
+
1
n
)
a_n = \dbinom{n+1}{n}
an=(nn+1) ,
n
n
n As a positive integer ;
- 2. Generate function expansion :
A
(
x
)
=
∑
n
=
0
∞
(
n
+
1
n
)
x
n
=
∑
n
=
0
∞
(
n
+
1
)
x
n
=
1
(
1
−
x
)
2
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{n+1}{n} x^n \\ & = \sum_{n=0}^{\infty} (n+1) x^n \\ & = \frac{1}{ {(1-x)}^2} \end{aligned}
A(x)=n=0∑∞(nn+1)xn=n=0∑∞(n+1)xn=(1−x)21
边栏推荐
- Elsevier latex 提交文章 pdftex.def Error: File `thumbnails/cas-email.jpeg‘ not found: using draf
- el-tree搜索方法使用
- [combinatorics] number of solutions of indefinite equations (number of combinations of multiple sets R | number of non negative integer solutions of indefinite equations | number of integer solutions
- Node start server
- [mathematical logic] predicate logic (individual word | individual domain | predicate | full name quantifier | existence quantifier | predicate formula | exercise)
- Edit and preview in the back pipe to get the value writing method of the form
- 机械臂速成小指南(八):运动学建模(标准DH法)
- 模糊查询时报错Parameter index out of range (1 > number of parameters, which is 0)
- float与0比较
- 用Three.js做一個簡單的3D場景
猜你喜欢

Agile certification (professional scrum Master) simulation exercise-2

VS 2019安装及配置opencv

敏捷认证(Professional Scrum Master)模拟练习题-2

Application of derivative in daily question

【PyG】理解MessagePassing过程,GCN demo详解

Do you really understand relays?

QQ小程序开发之 一些前期准备:预约开发账号、下载安装开发者工具、创建qq小程序

用Three.js做一个简单的3D场景

为什么线程崩溃不会导致 JVM 崩溃

Pytoch configuration
随机推荐
[set theory] partial order relation (partial order relation definition | partial order set definition | greater than or equal to relation | less than or equal to relation | integer division relation |
redis高级应用【密码防护、数据持久化、主从同步、哨兵模式、事务】【暂未完成(半成品)】
Use of check boxes: select all, deselect all, and select some
敏捷认证(Professional Scrum Master)模拟练习题
【PyG】理解MessagePassing过程,GCN demo详解
Limit of one question per day
Basic information of Promethus (I)
VS 2019 配置tensorRT生成engine
Node start server
MySql实战45讲【事务隔离】
MongoDB簡介
[combinatorics] number of solutions of indefinite equations (number of combinations of multiple sets R | number of non negative integer solutions of indefinite equations | number of integer solutions
Nce detail of softmax approximation
Destroy the session and empty the specified attributes
MongoDB主配置文件
程序员新人上午使用 isXxx 形式定义布尔类型,下午就被劝退?
[leetcode question brushing day 34] 540 Unique element in array, 384 Disrupt array, 202 Happy number, 149 Maximum number of points on a line
C#通用接口调用
Last update time of all sqlserver tables
使用InputFilter限制EditText时踩坑及解决方案