当前位置:网站首页>Matlab simulation of radar imaging 4 - range resolution analysis
Matlab simulation of radar imaging 4 - range resolution analysis
2022-07-28 06:27:00 【I have two candies】
To observe bandwidth 、 Add windows Influence on range resolution , The following is a visual comparison between different bandwidths 、 distance 、 With and without windows , The distinguishability of two point targets with different distances .
Set the parameter range
bandwidth[30e6, 40e6, 60e6, 80e6]distance[0 3 4 5 6 7 8 9]
clear; clc;
set(0,'defaultfigurecolor', 'w');
%% default parameters
T = 10e-6; % pulse duration
Rmin = 10000; % Rmin, Rmax: range bin
Rmax = 15000; % maximum distance radar can detect
RCS = [1 1]; % radar cross section of ideal targets
%% optianl parameters: R & B
Bandwidths = [30e6, 40e6, 60e6, 80e6]; % optional bandwidth
targets_distances = [0 3 4 5 6 7 8 9]; % distance between two points
Traverse and calculate the pulse compression output curve of echo under different conditions
Traverse the bandwidth and distance respectively , Calculate the pulse compression output with and without windows , Show the results of different situations on a graph in the form of subgraphs :
figure(1)
for i = 1:size(Bandwidths, 2)
B = Bandwidths(i); % chirp frequency modulation bandwidth
C = 3e8; % speed of light
K = B/T; % chirp slope
Rwid = Rmax - Rmin; % recieved window in meter
Twid = 2 * Rwid / C; % recieced window in second
Fs = 5 * B; % sampling frequency
Ts = 1 / Fs; % sampling spacing
Nwid = ceil(Twid / Ts); % recieved window in sampling number
for j = 1:size(targets_distances, 2)
R1 = 12000; % position of ideal point target1
R2 = 12000 + targets_distances(j); % position of ideal point target2
R = [R1, R2];
subplot(size(Bandwidths, 2), size(targets_distances, 2), ...
(i-1) * size(targets_distances, 2) + j)
% transmit signal
Nchirp = ceil(T / Ts); % pulse duration in number
t0 = linspace(-T/2, T/2, Nchirp); % discrete time of T
St = exp(1i*pi*K*t0.^2); % transmit signal
% generate echo wave
t = linspace(2*Rmin/C, 2*Rmax/C, Nwid); % received window
% open window at 2Rmin/C
% close window at 2Rmax/C
delay = 2*R/C; % delay of point targets
td = ones(2, 1)*t - delay'*ones(1, Nwid); % time -tau of targets
Srt = RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2)); % echo from all targets
% Pulse compression radar using FFT and IFFT
Nfft = 2^nextpow2(Nwid + Nwid-1); % number needed to compute linear
% convolve length = Nwid + Nwid-1
% not windowed
Sot = fftshift(ifft(fft(Srt, Nfft).*conj(fft(St, Nfft))));
% windowed
St_w = St.*hann(Nchirp)';
Sot_w = fftshift(ifft(fft(Srt, Nfft).*conj(fft(St_w, Nfft))));
% normalize Z
N0 = round(Nfft/2 - Nchirp/2); % valid series of fft in positive axis
Z = abs(Sot(N0 : N0+Nwid-1)); % FFT series
Z_max = max(Z);
Z = Z / max(Z);
Z = 20*log10(Z + 1e-6);
% normalize Z_w
Z_w = abs(Sot_w(N0 : N0+Nwid-1)); % FFT series
Z_w = Z_w / max(Z_w);
Z_w = 20*log10(Z_w + 1e-6);
% draw
plot(t*C/2, Z, 'color', [0.7 0.6 0.3], 'LineWidth', 1.5); hold on;
plot(t*C/2, Z_w, 'color', [0.5 0.7 0.9], 'LineWidth', 1.5);
center = round((R(1) + R(2)) / 2);
r1 = center - 20;
r2 = center + 20;
z1 = min(Z(r1-Rmin : r2-Rmin));
axis([r1, r2, z1, 5])
s = ['(', num2str((i-1)*length(targets_distances)+j), ') ', ...
num2str(targets_distances(j)), ...
' m ', num2str(Bandwidths(i)/1e6), 'MHz'];
xlabel(s, 'fontsize', 12, 'fontname', 'Times', 'FontWeight', 'bold')
set(gca, 'xticklabel', [])
set(gca, 'yticklabel', [])
end
end
give the result as follows :
analysis : More bandwidth , The higher the resolution ; After windowing, the side lobe is significantly suppressed , But the main valve is widened
边栏推荐
- TCL and eltcl? Cdnext and CMRL?
- 论福禄克DTX-1800如何测试CAT7网线?
- Cautious speculation about fusion on Apple silicon
- PyTorch 学习笔记 4 —— 自动计算梯度下降 AUTOGRAD
- USB network native driver for esxi updated to support esxi7.0 Update 2
- 雷达成像 Matlab 仿真 4 —— 距离分辨率分析
- set_ clock_ groups
- Detailed explanation of creepage distance and electrical clearance
- Low power design -power switch
- 杭州某公司福禄克FLUKE DTX-SFM2单模模块-修复案例
猜你喜欢

基于 YOLOV5 的 SAR 图像舰船检测

Fluke dtx-sfm2 single mode module of a company in Hangzhou - repair case

AEM online product promotion conference - Cable certification tester

VAN(DWConv+DWDilationConv+PWConv)

论福禄克DTX-1800如何测试CAT7网线?

Exploration of Clickhouse aggregation internal mechanism of aggregation

Mae mask self encoding is scalable learning

ICC2分析时序的神器 analyze_design_violations

EfficientNET_ V1

【服务器使用记录】通过跳板机登录远程服务器并进行文件传输
随机推荐
PyTorch 学习笔记 3 —— DATASETS & DATALOADERS & TRANSFORMS
如何测试工业以太网线缆(利用FLUKE DSX-8000)?
简述EMD分解、希尔伯特变换、谱方法
mysql join技巧
(PHP graduation design) obtained based on PHP fruit sales store management system
Synopsys Multivoltage Flow
Analysis of MOSFET damage at the moment of power failure of isolated power supply
set_case_analysis
福禄克DSX2-5000、DSX2-8000模块如何找到校准到期日期?
Why should fluke dsx2-5000 network cable tester be calibrated once a year?
ICC2(四)Routing and Postroute Optimization
IMS-FACNN(Improved Multi-Scale Convolution Neural Network integrated with a Feature Attention Mecha
Word邮件合并功能详解:合并后生成多个word文档,删除空白页
PyTorch 学习笔记 4 —— 自动计算梯度下降 AUTOGRAD
What about the insufficient memory of Clickhouse aggregation? Then improve the polymerization performance
Transformer self attention mechanism and complete code implementation
TCL和ELTCL?CDNEXT和CMRL?
Esxi on arm 10/22 update
机器学习笔记 5 —— Logistic Regression
EXFO 730c optical time domain reflectometer only has IOLm optical eye to upgrade OTDR (open OTDR permission)