当前位置:网站首页>[CF Gym101196-I] Waif Until Dark 网络最大流

[CF Gym101196-I] Waif Until Dark 网络最大流

2022-07-06 07:22:00 PushyTao

题目链接
在这里插入图片描述
输入

4 3 1
2 1 2
2 1 2
1 3
1 3
2 1 2 1

输出

2

题目大意:

小孩要玩玩具,一些玩具是属于一定的种类的
但是小孩只能够玩每种种类的一部分玩具,并且小孩并不会喜欢所有的玩具,每个小孩都有自己喜欢玩的玩具,问最多能够有多少个小孩被满足

输入n代表小花子的数量,m玩具的数量,p玩具种类的数量
然后是n行{
在这n行的第i行中:
每行一个k,然后是k个数,代表第i个孩子喜欢玩的k个玩具的编号
}
然后是p行{
在这p行的第i行中:
每行有一个l,然后是l个数,最后是r 代表这l个玩具属于种类i,并且这个种类最多用r个(小孩只能够玩每种种类的一部分玩具)
}
并且最重要的一句话:
Toys can be in at most one category and any toy not listed in these p lines is not in any toy category and all of them can be used. No toy number appears more than once on any line.
玩具最多属于一个种类,如果说有的玩具没有被划分到任意一个种类当中,都可以被任意的玩耍。并且保证所有的玩具只在一行中出现一次

接下来就是建图了:
确定源点和汇点分别为1001、1002
小孩要玩玩具=》将小孩和玩具之间建立容量为1的边
玩具属于{玩具的种类} =》 将玩具和种类建议容量为1的边(注意统计没有被添加在种类中的玩具,可以随便玩)
将源点与玩具的种类之间建立容量为r的边(种类最多用r个(小孩只能够玩每种种类的一部分玩具)
将源点与可以随意玩的玩具之间建立容量为1的边
最后将小孩与汇点1002相连,建立容量为1的边

最终求得源点1001与汇点1002的最大流即可获得最大的能够满足的小孩的数量

EK_code:

struct Edge {
    
	int u, v;
	ll cap, flow;
	Edge(int uu, int vv, ll _cap, ll _flow) {
    
		u = uu, v = vv, cap = _cap, flow = _flow;
	}
};
struct EdmondsKarp {
    
	ll n, m;
	vector<Edge> edges;
	vector<int> G[maxn];
	ll a[maxn], p[maxn];
	void _init(int n) {
    
		for (int i = 0; i <= n; i++) G[i].clear();
		edges.clear();
	}
	void add(int u, int v, ll cap) {
    
		edges.push_back(Edge(u, v, cap, 0));
		edges.push_back(Edge(v, u, 0, 0));
		m = edges.size();
		G[u].push_back(m - 2);
		G[v].push_back(m - 1);
	}
	ll maxFlow(int s, int t) {
    
		ll Flow = 0;
		while (true) {
    
			memset(a, 0, sizeof a);
			queue<int> que;
			que.push(s);
			a[s] = INF;
			while (que.size()) {
    
				int u = que.front();
				que.pop();
				for (int i = 0; i < G[u].size(); i++) {
    
					int id = G[u][i];
					Edge &e = edges[id];///不加&也是可以的
					int to = e.v;
					if (!a[to] && e.cap > e.flow) {
    
						p[to] = id;
						a[to] = min(a[u], e.cap - e.flow);
						que.push(to);
					}
				}
				if (a[t]) break;
			}
			if (!a[t]) break;
			for (int u = t; u != s; u = edges[p[u]].u) {
    
				edges[p[u]].flow += a[t];
				edges[p[u] ^ 1].flow -= a[t];
			}
			Flow += a[t];
		}
		return Flow;
	}
} slove;
int n, m, s, t;
int mp[maxn];
int main() {
    
	/** cin >> n >> m >> s >> t; slove.init(n); slove.n = n; for (int i = 1; i <= m; i++) { int u = read, v = read; ll cap = read; slove.add(u,v,cap); } cout << slove.maxFlow(s,t) <<endl; **/
	int p;
	n = read,m = read,p = read;
	// n child m toy p cate
	slove._init(1007);
	for(int i=1; i<=n; i++) {
    
		int cnt = read;
		for(int j=1; j<=cnt; j++) {
    
			int u = read;// toy id
			slove.add(u,m+i,1);// child <-> toy cap = 1 ok
		}
	}
	for(int i=1; i<=n; i++) {
    
		slove.add(i+m, 1002, 1);// child <-> end cap = 1; ok
	}
	for(int i=1; i<=p; i++) {
    
		int l = read;
		for(int j=1; j<=l; j++) {
    
			int v = read;
			mp[v] = 1;
			slove.add(m+n+i,v,1);// cate <-> toy cap = 1; ok
		}
		int amount = read;// r
		slove.add(1001,n+m+i,amount);// 1001 <->cate cap = amount; ok
	}
	for(int i=1; i<=m; i++) {
    
		if(mp[i] == 0) {
    
			slove.add(1001,i,1);// 1001 <-> toy cap = 1;
		}
	}
	int ans = slove.maxFlow(1001,1002);
	cout << ans << endl;
	return 0;
}

/** 4 3 1 2 1 2 2 1 2 1 3 1 3 2 1 2 1 **/

Dinic_code:

struct Edge {
    
    int u, v;
    ll cap, flow;
    Edge(int _u, int _v, ll _cap, ll _flow) {
    
        u = _u, v = _v;
        cap = _cap, flow = _flow;
    }
};
struct Dinic {
    
    vector<Edge> edge;
    vector<int> G[maxn];
    ll dis[maxn],cur[maxn];
    int n,s,t;
    bool vis[maxn];
    void init(int x,int _s,int _t){
    
    	n = x;
    	for(int i = 0;i <= n;i++) G[i].clear();
    	s = _s,t = _t;
    	edge.clear();
    }
    void add(int u,int v,ll cap){
    
    	edge.push_back(Edge(u,v,cap,0));
    	edge.push_back(Edge(v,u,0,0));
    	G[u].push_back(edge.size() - 2);
    	G[v].push_back(edge.size() - 1);
    }
    bool bfs(int s,int t){
    
    	queue<int> que;
    	memset(vis,0,sizeof vis);
    	// memset(dis,0,sizeof dis);
    	dis[s] = 0;
    	que.push(s);
    	vis[s] = 1;
    	while(que.size()){
    
    		int u = que.front();
    		que.pop();
    		for(int i=0;i<G[u].size();i++){
    
    			int id = G[u][i];
    			int to = edge[id].v;
    			if(!vis[to] && edge[id].cap > edge[id].flow){
    
    				dis[to] = dis[u] + 1;
    				que.push(to);
    				vis[to] = 1;
    			}
    		}
    	}
    	return vis[t];
    }
    ll dfs(int s,int t,ll rest){
    
    	if(s == t || rest == 0) return rest;
    	ll sum = 0LL;
    	ll Flow = 0, f;
    	for(ll& i = cur[s];i < G[s].size();i ++){
    
    		Edge& e = edge[G[s][i]];
    		if(dis[s] + 1 == dis[e.v] && (f = dfs(e.v ,t,min(rest,e.cap - e.flow))) > 0){
    
    			e.flow += f;
    			edge[G[s][i] ^ 1].flow -= f;
    			Flow += f;
    			rest -= f;
    			if(rest == 0) break;
    		}
    	}
    	return Flow;
    }
    ll getMaxFlow(int s,int t){
    
    	ll ans = 0;
    	while(bfs(s,t)) {
    
    		memset(cur,0,sizeof cur);
    		ans += dfs(s,t,0x3f3f3f3f);
    	}
    	return ans;
    }
} solve;
int mp[1007];
int main() {
    
    int n = read,m = read,p = read;
    solve.init(1000,1001,1002);
    for(int i=1; i<=n; i++) {
    
		int cnt = read;
		for(int j=1; j<=cnt; j++) {
    
			int u = read;// toy id
			solve.add(u,m+i,1);// child <-> toy cap = 1 ok
		}
	}
	for(int i=1; i<=n; i++) {
    
		solve.add(i+m, 1002, 1);// child <-> end cap = 1; ok
	}
	for(int i=1; i<=p; i++) {
    
		int l = read;
		for(int j=1; j<=l; j++) {
    
			int v = read;
			mp[v] = 1;
			solve.add(m+n+i,v,1);// cate <-> toy cap = 1; ok
		}
		int amount = read;// r
		solve.add(1001,n+m+i,amount);// 1001 <-> cate cap = amount; ok
	}
	for(int i=1; i<=m; i++) {
    
		if(mp[i] == 0) {
    
			solve.add(1001,i,1);// 1001 <-> toy cap = 1;
		}
	}
	int ans = solve.getMaxFlow(1001,1002);
	cout << ans << endl;
    return 0;
}
/** **/

原网站

版权声明
本文为[PushyTao]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_45712255/article/details/125567569