当前位置:网站首页>Basic knowledge of Linear Algebra -- concepts and relationships of common matrices
Basic knowledge of Linear Algebra -- concepts and relationships of common matrices
2022-06-12 09:04:00 【Little wish】
Transpose matrix
Symbol : A T A^T AT
Concept : Exchange of ranks
A = ( 1 2 99 3 4 88 ) , A T = ( 1 3 2 4 99 88 ) A=\left( \begin{matrix} 1 & 2 & 99 \\ 3 & 4 & 88 \end{matrix} \right), A^T=\left( \begin{matrix} 1 & 3 \\ 2 & 4 \\ 99 & 88 \end{matrix} \right) A=(13249988),AT=⎝⎛12993488⎠⎞
The remainder formula
Symbol : M i j M_{ij} Mij
Concept : For squares A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n, The matrix A A A The elements of a i j a_{ij} aij In the second place i i i Xing He j j j After the column is crossed out , The rest of the elements are in the original order n − 1 n-1 n−1 Determined by the order matrix determinant It's called the element a i j a_{ij} aij The Yu Zi form of , Write it down as M i j M_{ij} Mij.
Algebraic cofactor
Symbol : A i j A_{ij} Aij
Concept : A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij It's called the element a i j a_{ij} aij The algebraic covalent of .
example : matrix A = ( 2 3 1 3 4 1 3 7 2 ) A=\left( \begin{matrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{matrix} \right) A=⎝⎛233347112⎠⎞
M 11 = ∣ 4 1 7 2 ∣ = 1 , A 11 = ( − 1 ) 1 + 1 M 11 = 1 M_{11}=\left| \begin{matrix} 4 & 1 \\ 7 & 2 \end{matrix} \right|=1, A_{11}=(-1)^{1+1}M_{11}=1 M11=∣∣∣∣4712∣∣∣∣=1,A11=(−1)1+1M11=1
M 21 = ∣ 3 1 7 2 ∣ = − 1 , A 11 = ( − 1 ) 2 + 1 M 11 = 1 M_{21}=\left| \begin{matrix} 3 & 1 \\ 7 & 2 \end{matrix} \right|=-1, A_{11}=(-1)^{2+1}M_{11}=1 M21=∣∣∣∣3712∣∣∣∣=−1,A11=(−1)2+1M11=1
Adjoint matrix
Symbol : A ∗ A^* A∗
Concept : For squares A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n, Every element a i j a_{ij} aij The algebraic covalent of A i j A_{ij} Aij stay a i j a_{ij} aij The transpose matrix of the matrix composed of corresponding positions .
A ∗ = ( A 11 A 12 ⋯ A 1 n A 21 A 22 ⋯ A 2 n ⋮ ⋮ ⋱ ⋮ A n 1 A n 2 ⋯ A n n ) T = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) A^{*}=\left( \begin{matrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{matrix} \right)^T = \left( \begin{matrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{matrix} \right) A∗=⎝⎜⎜⎜⎛A11A21⋮An1A12A22⋮An2⋯⋯⋱⋯A1nA2n⋮Ann⎠⎟⎟⎟⎞T=⎝⎜⎜⎜⎛A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann⎠⎟⎟⎟⎞
example : matrix A = ( − 3 4 6 2 ) A=\left( \begin{matrix} -3 & 4 \\ 6 & 2 \end{matrix} \right) A=(−3642)
A ∗ = ( M 11 − M 12 − M 21 M 22 ) T = ( 2 − 6 − 4 − 3 ) T = ( 2 − 4 − 6 − 3 ) A^{*}=\left( \begin{matrix} M_{11} & -M_{12} \\ -M_{21} & M_{22} \end{matrix} \right)^T=\left( \begin{matrix} 2 & -6 \\ -4 & -3 \end{matrix} \right)^T=\left( \begin{matrix} 2 & -4 \\ -6 & -3 \end{matrix} \right) A∗=(M11−M21−M12M22)T=(2−4−6−3)T=(2−6−4−3)
Inverse matrix
Symbol : A − 1 A^{-1} A−1
Definition : A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^{*} A−1=∣A∣1A∗
example : matrix A = ( − 3 4 6 2 ) A=\left( \begin{matrix} -3 & 4 \\ 6 & 2 \end{matrix} \right) A=(−3642)
According to the above calculation, we have obtained A ∗ A^{*} A∗, ∣ A ∣ = − 30 |A|=-30 ∣A∣=−30, A − 1 = 1 − 30 ( 2 − 4 − 6 − 3 ) A^{-1}=\frac{1}{-30}\left( \begin{matrix} 2 & -4 \\ -6 & -3 \end{matrix} \right) A−1=−301(2−6−4−3)
Check : A − 1 A = 1 − 30 ( 2 − 4 − 6 − 3 ) ( − 3 4 6 2 ) = 1 − 30 ( − 30 0 0 − 30 ) = ( 1 0 0 1 ) A^{-1}A=\frac{1}{-30}\left( \begin{matrix} 2 & -4 \\ -6 & -3 \end{matrix} \right) \left( \begin{matrix} -3 & 4 \\ 6 & 2 \end{matrix} \right)=\frac{1}{-30}\left( \begin{matrix} -30 & 0 \\ 0 & -30 \end{matrix} \right) = \left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) A−1A=−301(2−6−4−3)(−3642)=−301(−3000−30)=(1001)
边栏推荐
- [data storage] storage of floating point data in memory
- Wechat applet image saving function
- Gets the number of occurrences of a character in a string
- The newline character with in the string is converted to an array
- Union selector
- 利用nvm动态调整nodejs版本,解决因为node版本过高或过低导致项目无法运行和打包
- 43 cas d'analyse du réseau neuronal MATLAB: chapitre 7 régression du réseau RBF - - réalisation de la régression fonctionnelle non linéaire
- ip、DNS、域名、URL、hosts
- mySql学习记录——二、mySql建表命令
- Background color translucent
猜你喜欢
![(node:22344) [DEP0123] DeprecationWarning: Setting the TLS ServerName to an IP address is not permit](/img/c1/d56ec09663857afa52f20848aeadac.png)
(node:22344) [DEP0123] DeprecationWarning: Setting the TLS ServerName to an IP address is not permit
![Offer:[day 8 dynamic planning (simple)] --- > maximum profit of stock](/img/42/000a3e601ba1771a1ee07fcd800307.jpg)
Offer:[day 8 dynamic planning (simple)] --- > maximum profit of stock

第三章 寄存器 (内存访问)
![[character set 9] will GBK be garbled when copied to unicode?](/img/dc/c9ec4a90355d30479f23fdead4b349.png)
[character set 9] will GBK be garbled when copied to unicode?
![[data storage] storage of floating point data in memory](/img/c4/a67735858ce5d58bd504b087a2d123.png)
[data storage] storage of floating point data in memory

利用nvm动态调整nodejs版本,解决因为node版本过高或过低导致项目无法运行和打包

Background position - exact units

mySql学习记录——二、mySql建表命令

ISCSI详解(五)——ISCSI客户端配置实战

Background fixing effect
随机推荐
重启Kubernetes Pod的几种方式
POI library update excel picture
【字符集八】char8_t、char16_t、char32_t、wchar、char
2024. 考试的最大困扰度-滑动窗口
[character set 9] will GBK be garbled when copied to unicode?
Encapsulate the amount input box component.
Judge whether the object is empty
day5-x
Set up redis sentinel cluster (instance):
第三章 寄存器 (内存访问)
Background position position NOUN
域名映射到指定IP
【sklearn学习】LightGBM
Leetcode 336 palindrome pair (palindrome string + hash)
mySql学习记录——三、mysql查询语句
分库分表会带来读扩散问题?怎么解决?
[character set 6] wide string and multi byte character conversion
目标识别、检测和 6D 姿态估算源码与方案(最先进的方法和数据集)
[sklearn] lightgbm
ERROR 1630 (42000): FUNCTION a.avg does not exist. Check the ‘Function Name Parsing and Resolution‘