当前位置:网站首页>1.17 daily improvement of winter vacation learning (frequency school and Bayesian school) and maximum likelihood estimation
1.17 daily improvement of winter vacation learning (frequency school and Bayesian school) and maximum likelihood estimation
2022-06-26 08:47:00 【Thick Cub with thorns】
1.17 Make a little progress every day during the winter vacation
Fundamentals of machine learning
Frequency school and Bayes school
For a dataset X : d a t a → X ( x 1 , x 2 , … , x n ) T θ : p a r a m e t e r X:data \to X(x_1 , x_2 , \dots, x_n)^T \quad \theta:parameter X:data→X(x1,x2,…,xn)Tθ:parameter
x − p ( x ∣ θ ) x -p(x|\theta) x−p(x∣θ)
Frequency school ( Statistical machine learning )
θ \theta θ: Unknown constant ,x Obey probability distribution
θ m l e = a r g m a x θ l o g P ( x ∣ θ ) \theta_{mle} = arg max_\theta logP(x|\theta) θmle=argmaxθlogP(x∣θ)
optimization problem
- Model
- loss function
- The algorithm calculates the loss
Bayesian school ( Probability graph model )
θ \theta θ Obey probability distribution , θ − p ( x ∣ θ ) \theta-p(x|\theta) θ−p(x∣θ)
Bayesian formula derivation
p ( θ ∣ x ) = p ( x ∣ θ ) p ( θ ) p ( x ) p(\theta|x)=\frac{p(x|\theta)p(\theta)}{p(x)} p(θ∣x)=p(x)p(x∣θ)p(θ)
p ( θ ) p(\theta) p(θ): Prior probability p ( θ ∣ x ) p(\theta|x) p(θ∣x): Posterior probability
Bayesian estimation
p ( θ ∣ x ) = p ( x ∣ θ ) p ( θ ) ∫ θ p ( x ∣ θ ) p ( θ ) d θ p(\theta|x)=\frac{p(x|\theta)p(\theta)}{\int_\theta p(x|\theta)p(\theta)d\theta} p(θ∣x)=∫θp(x∣θ)p(θ)dθp(x∣θ)p(θ)
Bayesian prediction
KaTeX parse error: Expected 'EOF', got '&' at position 17: …p(\tilde{x}|X) &̲=\int_\theta p(…
The problem of integral
Gaussian distribution
Normal distribution
For a dataset X : d a t a → X ( x 1 , x 2 , … , x n ) T X:data \to X(x_1 , x_2 , \dots, x_n)^T X:data→X(x1,x2,…,xn)T
Ask for his maximum likelihood estimation
θ m l e = a r g m a x θ l o g P ( x ∣ θ ) \theta_{mle} = arg max_\theta logP(x|\theta) θmle=argmaxθlogP(x∣θ)
solve μ \mu μ( Unbiased estimate )
l o g P ( x ∣ θ ) = log ∏ i = 1 N p ( x i ∣ θ ) = ∑ i = 1 N log p ( x i ∣ θ ) μ M L E = arg m a x μ l o g P ( x ∣ θ ) = a r g m a x μ ( ∑ i = 1 N − ( x i − μ ) 2 2 σ 2 ) = a r g m i n μ m i n ∑ i = 1 N ( x i − μ ) 2 partial guide Count = 0 μ i = 1 N ∑ i = 1 N x i E ( μ M L E ) = 1 N ∑ i = 1 N E [ x i ] = μ logP(x|\theta)=\log \prod\limits_{i=1}^Np(x_i|\theta)=\sum\limits_{i=1}^N \log p(x_i|\theta) \\ \mu_{MLE}=\arg max_\mu logP(x|\theta)\\ =argmax_\mu(\sum\limits_{i=1}^N-\frac{(x_i-\mu)^2}{2\sigma^2}) \\ =argmin_\mu min\sum\limits_{i=1}^N(x_i-\mu)^2 \\ Partial derivative =0 \\ \mu_i=\frac{1}{N}\sum\limits_{i=1}^Nx_i \\ E(\mu_{MLE})=\frac{1}{N}\sum\limits_{i=1}^NE[x_i]=\mu logP(x∣θ)=logi=1∏Np(xi∣θ)=i=1∑Nlogp(xi∣θ)μMLE=argmaxμlogP(x∣θ)=argmaxμ(i=1∑N−2σ2(xi−μ)2)=argminμmini=1∑N(xi−μ)2 partial guide Count =0μi=N1i=1∑NxiE(μMLE)=N1i=1∑NE[xi]=μ
solve σ \sigma σ( A biased estimate )
KaTeX parse error: Expected group after '_' at position 80: …\ Partial derivative =0 \\ \sum_̲\limits{i=1}^N[…
边栏推荐
- Euler function: find the number of numbers less than or equal to N and coprime with n
- Degree of freedom analysis_ nanyangjx
- Design based on STM32 works: multi-functional atmosphere lamp, wireless control ws2812 of mobile app, MCU wireless upgrade program
- Remote centralized control of distributed sensor signals using wireless technology
- keras_ Callback function summary
- Partial summary of 45 lectures on geek time MySQL
- pgsql_ UDF01_ jx
- 鲸会务为活动现场提供数字化升级方案
- Teach you a few tricks: 30 "overbearing" warm words to coax girls, don't look regret!
- Batch modify file name
猜你喜欢

Relationship extraction --tplinker

三菱PLC若想实现以太网无线通讯,需要具备哪些条件?

pgsql_ UDF01_ jx

(4) Independent key

51 MCU project design: Based on 51 MCU clock perpetual calendar

static const与static constexpr的类内数据成员初始化

STM32 porting mpu6050/9250 DMP official library (motion_driver_6.12) modifying and porting DMP simple tutorial

Line detection_ nanyangjx

Stream analysis of hevc learning

Relationship extraction -- casrel
随机推荐
nn. Modulelist and nn Sequential
Matlab function foundation (directly abandon version)
(3) Dynamic digital tube
Trimming_ nanyangjx
Whale conference one-stop intelligent conference system helps organizers realize digital conference management
Digital image processing learning (II): Gaussian low pass filter
Zlmediakit push pull flow test
鲸会务为活动现场提供数字化升级方案
QT_ AI
73b2d wireless charging and receiving chip scheme
Text to SQL model ----irnet
OpenGL display mat image
Monitor iPad Keyboard Display and hide events
Koa_ mySQL_ Integration of TS
What are the conditions for Mitsubishi PLC to realize Ethernet wireless communication?
I Summary Preface
Leetcode: array fast and slow pointer method
SQL learning experience (II): question brushing record
Realizing sequence annotation with transformers
Detailed process of generating URDF file from SW model