当前位置:网站首页>/silicosis/geo/GSE184854_ scRNA-seq_ mouse_ lung_ ccr2/GSE184854_ RAW/GSM5598265_ matrix_ inflection_ demult
/silicosis/geo/GSE184854_ scRNA-seq_ mouse_ lung_ ccr2/GSE184854_ RAW/GSM5598265_ matrix_ inflection_ demult
2022-07-02 03:06:00 【youngleeyoung】
step1
library(Seurat)
#https://www.jianshu.com/p/5b26d7bc37b7
getwd()
path="G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW/"
setwd(path)
getwd()
#new_counts=read.table(file = "G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW/GSM5598265_matrix_inflection_demulti_SilicaWT.txt/GSM5598265_matrix_inflection_demulti_SilicaWT.txt")
head(new_counts)
# Or you can just create color urat object(counts=counts)
mydata <- CreateSeuratObject(counts = read.table(file = "G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW/GSM5598265_matrix_inflection_demulti_SilicaWT.txt/GSM5598265_matrix_inflection_demulti_SilicaWT.txt"),
min.cells = 10, project = "mydata_scRNAseq")
dim(mydata)
Idents(mydata)
mydata$orig_stim=Idents(mydata)
table(Idents(mydata))
colnames(mydata)
library(stringr)
teststring=colnames(mydata)[1:50]
str_split(teststring,"_",simplify = T)
str_split(teststring,"_",simplify = T)[,2]
table(str_split(colnames(mydata),"_",simplify = T)[,2])
table(str_split(colnames(mydata),"_",simplify = T)[,1])
mydata$percent.mt=PercentageFeatureSet(mydata,pattern = "^Mt")
Idents(mydata)
grepl(colnames(mydata),pattern = 'A0301')
colnames(mydata)[grepl(colnames(mydata),pattern = 'A0301')]
table(Idents(mydata))
mydata=RenameIdents(mydata,'A0301'='day_21_1','A0302'='day_21_2','A0303'='day_21_3',
'A0304'='day_7_1','A0305'='day_7_2','A0306'='day_7_3',
'A0307'='day_3_1','A0308'='day_3_2','A0309'='day_3_3',
'doublet'='doublet')
mydata$mystim=Idents(mydata)
table(mydata$mystim)
dim(mydata)
Idents(mydata)=mydata$orig_stim
mydata=RenameIdents(mydata,'A0301'='Day_21','A0302'='Day_21','A0303'='Day_21',
'A0304'='Day_7','A0305'='Day_7','A0306'='Day_7',
'A0307'='Day_3','A0308'='Day_3','A0309'='Day_3',
'doublet'='Doublet')
mydata$my_stim_3=Idents(mydata)
save(mydata,file = "G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW/mydata.rds")
step2
library(dplyr)
library(cowplot)
library(Seurat)
library(harmony)
getwd()
path="G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW_all_merged/step_2_harmony/"
dir.create(path)
setwd(path)
getwd()
#load("G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW/mydata.rds")
load("G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW_all_merged/merged.rds")
table(Idents(All.merge))
All=subset(All.merge,idents = c('A0301', 'A0302', 'A0303',
'A0304', 'A0305' ,'A0306',
'A0307' , 'A0308', 'A0309'))
dim(All)
table(Idents(All))
#All$percent.mt=PercentageFeatureSet(All,pattern = "^mt-")
pdf("1_contorl_QC.pdf")
VlnPlot(All, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
dev.off()
All <- subset(All, subset = nFeature_RNA > 200 & percent.mt < 20)## 15499,16133;
All = All%>%Seurat::NormalizeData(verbose = FALSE) %>%
FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>%
ScaleData(verbose = FALSE)
All = RunPCA(All, npcs = 50, verbose = FALSE)
pdf("2_ElbowPlot.pdf")
ElbowPlot(All, ndims = 50)
dev.off()
table(Idents(All))
All$stim=Idents(All)
#All@meta.data$stim <- c(rep("case", length(grep("1$", All@assays$RNA@counts@Dimnames[[2]]))), rep("ctrl", length(grep("2$", All@assays$RNA@counts@Dimnames[[2]])))) ## 8186,7947;
pdf("2_pre_harmony_harmony_plot.pdf")
options(repr.plot.height = 5, repr.plot.width = 12)
p1 <- DimPlot(object = All, reduction = "pca", pt.size = .1, group.by = "stim")
p2 <- VlnPlot(object = All, features = "PC_1", group.by = "stim", pt.size = .1)
plot_grid(p1, p2)
dev.off()
##########################run harmony
All <- All %>% RunHarmony("stim", plot_convergence = TRUE)
harmony_embeddings <- Embeddings(All, 'harmony')
pdf("1_contorl_QC_.pdf")
VlnPlot(All, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
dev.off()
pdf("2_after_harmony_harmony_plot.pdf")
options(repr.plot.height = 5, repr.plot.width = 12)
p3 <- DimPlot(object = All, reduction = "harmony", pt.size = .1, group.by = "stim")
p4 <- VlnPlot(object = All, features = "harmony_1", group.by = "stim", pt.size = .1)
plot_grid(p3, p4)
dev.off()
#######################cluster
All <- All %>%
RunUMAP(reduction = "harmony", dims = 1:30) %>%
RunTSNE(reduction = "harmony", dims = 1:30) %>%
FindNeighbors(reduction = "harmony", dims = 1:30)
All<-All%>% FindClusters(resolution = 3) %>% identity()
options(repr.plot.height = 4, repr.plot.width = 10)
pdf("3_after_harmony_umap_two_group.pdf")
DimPlot(All, reduction = "umap", group.by = "stim", pt.size = .1)
dev.off()
pdf("3_after_harmony_cluster_UMAP.pdf")
DimPlot(All, reduction = "umap", label = TRUE, pt.size = .1)
dev.off()
pdf("3_umap_samples_split.pdf")
DimPlot(All, reduction = "umap", pt.size = .1, split.by = "stim", label = T)
dev.off()
pdf("3_after_harmony_tsne_two_group.pdf")
DimPlot(All, reduction = "tsne", group.by = "stim", pt.size = .1)
dev.off()
pdf("3_after_harmony_cluster_tSNE.pdf")
DimPlot(All, reduction = "tsne", label = TRUE, pt.size = .1)
dev.off()
pdf("3_tSNE_samples_split.pdf")
DimPlot(All, reduction = "tsne", pt.size = .1, split.by = "stim", label = T)
dev.off()
#######################################################################
stat = as.matrix(table(Idents(All), All$stim))
write.table(stat, "cluster_stat.txt", sep = "\t", quote = F, col.names = T, row.names = T)
################################################################
All<-All%>% FindClusters(resolution = 2) %>% identity()
Disease.markers <- FindAllMarkers(All, min.pct = 0.25, logfc.threshold = 0.35, only.pos = T)
head(Disease.markers)
top100markers <- Disease.markers %>% group_by(cluster) %>% slice_max(avg_log2FC,n=100)
openxlsx::write.xlsx(top100markers,'top100markers_for_all_res2.xlsx')
#write.table(top20markers, "top20_markers.txt", sep = "\t", quote = F, col.names = T, row.names = F)
#save(All, file = "G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW_all_merged/step_2_harmony/all_harmony.rds")
load("G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/GSE184854_RAW_all_merged/step_2_harmony/all_harmony.rds")
getwd()
DimPlot(All,label = T)
FeaturePlot(All,features = c('Cd68'))
FeaturePlot(All,features = c('Lyz2'))
FeaturePlot(All,features = c('Mrc1'))
FeaturePlot(All,features = c('Adgre1'))
FeaturePlot(All,features = c('Axl'))
FeaturePlot(All,features = c('Csf1r'))
FeaturePlot(All,features = c('Ly6c2'))
FeaturePlot(All,features = c('Il7r'))
FeaturePlot(All,features = c('Car4'))
FeaturePlot(All,features = c('Siglecf'))
FeaturePlot(All,features = c('Mki67'))
FeaturePlot(All,features = c('Jchain','Tnfrsf17'),split.by = 'mystim')
DotPlot(All,features = c('Jchain','Tnfrsf17'),split.by = 'mystim')+RotatedAxis()+ggplot2::coord_flip()
colnames(All)
grepl(colnames(All),pattern = 'WT')
table(grepl(colnames(All),pattern = 'WT'))
table(grepl(colnames(All),pattern = 'CCR'))
All$orig_stim=Idents(All)
if(1==1){
All$mystim_validate=ifelse(grepl(colnames(All),pattern = 'WT') &
(grepl(colnames(All),pattern = 'A0301')|grepl(colnames(All),pattern = 'A0302')|grepl(colnames(All),pattern = 'A0303')),
paste0(colnames(All),'_Day_21_WT'),
ifelse(grepl(colnames(All),pattern = 'WT') &
(grepl(colnames(All),pattern = 'A0304')|grepl(colnames(All),pattern = 'A0305')|grepl(colnames(All),pattern = 'A0306'))
,paste0(colnames(All),'_Day_7_WT'),
ifelse(grepl(colnames(All),pattern = 'WT') &
(grepl(colnames(All),pattern = 'A0307')|grepl(colnames(All),pattern = 'A0308')|grepl(colnames(All),pattern = 'A0309'))
,paste0(colnames(All),'_Day_3_WT'),
ifelse(grepl(colnames(All),pattern = 'CCR') &
(grepl(colnames(All),pattern = 'A0301')|grepl(colnames(All),pattern = 'A0302')|grepl(colnames(All),pattern = 'A0303'))
,paste0(colnames(All),'_Day_21_CCR'),
ifelse(grepl(colnames(All),pattern = 'CCR') &
(grepl(colnames(All),pattern = 'A0304')|grepl(colnames(All),pattern = 'A0305')|grepl(colnames(All),pattern = 'A0306'))
,paste0(colnames(All),'_Day_7_CCR'),
ifelse(grepl(colnames(All),pattern = 'CCR') &
(grepl(colnames(All),pattern = 'A0307'))
,paste0(colnames(All),'_Day_3_CCR'),paste0(colnames(All),'_Day_3_CCR'))
)
))
)
)
All$mystim=ifelse(grepl(colnames(All),pattern = 'WT') &
(grepl(colnames(All),pattern = 'A0301')|grepl(colnames(All),pattern = 'A0302')|grepl(colnames(All),pattern = 'A0303')),
paste0('_Day_21_WT'),
ifelse(grepl(colnames(All),pattern = 'WT') &
(grepl(colnames(All),pattern = 'A0304')|grepl(colnames(All),pattern = 'A0305')|grepl(colnames(All),pattern = 'A0306'))
,paste0('_Day_7_WT'),
ifelse(grepl(colnames(All),pattern = 'WT') &
(grepl(colnames(All),pattern = 'A0307')|grepl(colnames(All),pattern = 'A0308')|grepl(colnames(All),pattern = 'A0309'))
,paste0('_Day_3_WT'),
ifelse(grepl(colnames(All),pattern = 'CCR') &
(grepl(colnames(All),pattern = 'A0301')|grepl(colnames(All),pattern = 'A0302')|grepl(colnames(All),pattern = 'A0303'))
,paste0('_Day_21_CCR'),
ifelse(grepl(colnames(All),pattern = 'CCR') &
(grepl(colnames(All),pattern = 'A0304')|grepl(colnames(All),pattern = 'A0305')|grepl(colnames(All),pattern = 'A0306'))
,paste0('_Day_7_CCR'),
ifelse(grepl(colnames(All),pattern = 'CCR') &
(grepl(colnames(All),pattern = 'A0307'))
,paste0('_Day_3_CCR'),paste0('_Day_3_CCR'))
)
))
)
)
}
table(All$mystim)
table(All$orig_stim)
table(All$orig.ident)
table(grep(colnames(All),pattern = 'WT') & (grep(colnames(All),pattern = 'A0301')|
grep(colnames(All),pattern = 'A0302')|
grep(colnames(All),pattern = 'A0303'))
)
All$mystim=ifelse(grepl(colnames(All),pattern = 'WT'),'WT','CCR')
table(All$mystim)
table(ifelse(grepl(colnames(All),pattern = 'WT'),'WT','CCR'))
length(grep(colnames(All),pattern = 'WT'))
table(All$orig.ident)
Idents(All)=All$mystim
table(grepl(colnames(All),pattern = 'WT') )
grepl(c('af','faf','cd'),pattern = 'a')
step3
getwd()
path="G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/step_3_mono_macrophage/"
dir.create(path)
setwd(path)
getwd()
load("G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/step_2_harmony/silicosis_mouse_harmony.rds")
table(Idents(All))
#csf1r and cd68
macrophage_and_monocyte=subset(All,idents =c('1','7','11','12','15','22',
'31','35') )
table(Idents(macrophage_and_monocyte))
DimPlot(macrophage_and_monocyte)
macrophage_and_monocyte$orig_idents_from_All=Idents(macrophage_and_monocyte)
table(Idents(macrophage_and_monocyte),macrophage_and_monocyte$stim)
subset_data=macrophage_and_monocyte
subset_data = subset_data %>%
Seurat::NormalizeData(verbose = FALSE) %>%
FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>%
ScaleData(verbose = FALSE) %>%
RunPCA(npcs = 50, verbose = FALSE)
ElbowPlot(subset_data, ndims = 50)
VlnPlot(subset_data, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
##########################run harmony
#BiocManager::install('harmony')
library('harmony')
subset_data <- subset_data %>% RunHarmony("stim", plot_convergence = TRUE)
harmony_embeddings <- Embeddings(subset_data, 'harmony')
#######################cluster
dims = 1:30
subset_data <- subset_data %>%
RunUMAP(reduction = "harmony", dims = dims) %>%
RunTSNE(reduction = "harmony", dims = dims) %>%
FindNeighbors(reduction = "harmony", dims = dims)
DimPlot(subset_data)
save(subset_data, file="sepsis_Endothelial.rds")
file=getwd()
r = 0.2
load(paste(file, "sepsis_Endothelial.rds", sep="/"))
dir.create(paste(file,r,sep="/"))
setwd(paste(file,r,sep="/"))
subset_data <- FindClusters(subset_data, resolution = r)
save(subset_data, file=paste0("sepsis_Endothelial_r", r, ".rds"))
subset_data <- ScaleData(subset_data, verbose = FALSE, features = rownames(subset_data))
pdf("1_Endothelial_cluster_TSNE.pdf")
p = DimPlot(subset_data, reduction = "tsne", label = TRUE, pt.size = 1,label.size = 6)
print(p)
dev.off()
pdf("1_Endothelial_cluster_UMAP.pdf")
p = DimPlot(subset_data, reduction = "umap", label = TRUE, pt.size = 1,label.size = 6)
print(p)
dev.off()
stat = cbind(table(Idents(subset_data), subset_data$stim), All = rowSums(table(Idents(subset_data), subset_data$stim)))
stat = rbind(stat, All = colSums(stat))
stat<-as.data.frame(stat)
stat
openxlsx::write.xlsx(stat, "2_Endothelial_cluster_stat.xlsx", col.names=T, row.names=T)
######################## find marker
markers <- FindAllMarkers(subset_data, min.pct = 0.25, logfc.threshold = 0.25, only.pos=T)
openxlsx::write.xlsx(markers,"3_Endothelial_cluster_markers.xlsx", col.names=T,row.names=F)
FeaturePlot(subset_data,features = c('C1qa',
'C1qb',
'C1qc'))
FeaturePlot(subset_data,features = c('Mmp9',
'Spp1',
'Marcks',
'Il1rn'))
FeaturePlot(subset_data,features = c('Mmp9',
'Spp1',
'Marcks',
'Il1rn'),split.by = 'stim')
DotPlot(subset_data,features = c('Mmp9',
'Spp1',
'Marcks',
'Il1rn',
'C1qa','C1qb','C1qc'))
r=0.3
load(paste(file, "sepsis_Endothelial.rds", sep="/"))
dir.create(paste(file,r,sep="/"))
setwd(paste(file,r,sep="/"))
subset_data <- FindClusters(subset_data, resolution = r)
save(subset_data, file=paste0("sepsis_Endothelial_r", r, ".rds"))
subset_data <- ScaleData(subset_data, verbose = FALSE, features = rownames(subset_data))
pdf("1_Endothelial_cluster_TSNE.pdf")
p = DimPlot(subset_data, reduction = "tsne", label = TRUE, pt.size = 1,label.size = 6)
print(p)
dev.off()
pdf("1_Endothelial_cluster_UMAP.pdf")
p = DimPlot(subset_data, reduction = "umap", label = TRUE, pt.size = 1,label.size = 6)
print(p)
dev.off()
stat = cbind(table(Idents(subset_data), subset_data$stim), All = rowSums(table(Idents(subset_data), subset_data$stim)))
stat = rbind(stat, All = colSums(stat))
stat<-as.data.frame(stat)
stat
openxlsx::write.xlsx(stat, "2_Endothelial_cluster_stat.xlsx", col.names=T, row.names=T)
######################## find marker
markers <- FindAllMarkers(subset_data, min.pct = 0.25, logfc.threshold = 0.25, only.pos=T)
openxlsx::write.xlsx(markers,"3_Endothelial_cluster_markers.xlsx", col.names=T,row.names=F)
DimPlot(subset_data,label = T)
step4
getwd()
path="G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/step_4_macrophage_from_0.3"
dir.create(path)
setwd(path)
getwd()
load("G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/step_3_mono_macrophage/0.3/sepsis_Endothelial_r0.3.rds")
DimPlot(subset_data,label = T)
subset_data=subset(subset_data,idents = c('1','2','4'))
DimPlot(subset_data,label = T)
subset_data$cluster124=Idents(subset_data)
# Merge
subset_data = subset_data %>%
Seurat::NormalizeData(verbose = FALSE) %>%
FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>%
ScaleData(verbose = FALSE) %>%
RunPCA(npcs = 50, verbose = FALSE)
ElbowPlot(subset_data, ndims = 50)
VlnPlot(subset_data, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
##########################run harmony
#BiocManager::install('harmony')
library('harmony')
subset_data <- subset_data %>% RunHarmony("stim", plot_convergence = TRUE)
harmony_embeddings <- Embeddings(subset_data, 'harmony')
#######################cluster
dims = 1:30
subset_data <- subset_data %>%
RunUMAP(reduction = "harmony", dims = dims) %>%
RunTSNE(reduction = "harmony", dims = dims) %>%
FindNeighbors(reduction = "harmony", dims = dims)
DimPlot(subset_data)
FeaturePlot(subset_data,features = c('C1qa',
'C1qb',
'C1qc'))
FeaturePlot(subset_data,features = c('Mmp9',
'Spp1',
'Marcks',
'Il1rn'))
FeaturePlot(subset_data,features = c('Mmp9',
'Spp1',
'Marcks',
'Il1rn'),split.by = 'stim')
DotPlot(subset_data,features = c('Mmp9',
'Spp1',
'Marcks',
'Il1rn',
'C1qa','C1qb','C1qc',
'Csf1','Csf1r',
'Car4', 'Ctsk', 'Chil3', 'S100a1','Wfdc21',
'Ear1', 'Fabp1',
'Itgam', 'Cd36','Gpnmb',
'Litaf', 'Jund', 'Bhlhe40', 'Bhlhe41','Klf9'))
subset_data=RenameIdents(subset_data,'4'='IM','2'='AM','1'='Mo-AM')
getwd()
#save(subset_data,file = "G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/step_4_macrophage_from_0.3/im_am_from_res0.3.rds")
load("G:/silicosis/geo/GSE184854_scRNA-seq_mouse_lung_ccr2/step_4_macrophage_from_0.3/im_am_from_res0.3.rds")
library(Seurat)
DotPlot(subset_data,features = c('Chi3l1', 'Marcks', 'Il1rn', 'Pla2g7', 'Mmp9', 'Spp1',
'Mmp12','Mmp14'))
DotPlot(All.merge,features = c('Spp1','Mmp14','Il1rn','Marcks','Pla2g7'))
VlnPlot(subset_data,features = c('Chi3l1', 'Marcks', 'Il1rn', 'Pla2g7', 'Mmp9', 'Spp1',
'Mmp12','Mmp14'))
#'Apoe', 'Mafb',
DotPlot(subset_data,features = c('C1qa','C1qb','C1qc',
'Ear1','Fabp1', 'Ctsk','Car4', 'Chil3', 'S100a1' , 'Wfdc21',
'Itgam', 'Litaf', 'Gpnmb','Apoe','Mafb',
'Mmp14','Spp1'))+RotatedAxis()+ggplot2:::coord_flip()
DotPlot(All.merge,features = c('Il34','Csf1'))
VlnPlot(All.merge,features = 'Il34')
VlnPlot(All.merge,features = 'Csf1')
VlnPlot(All.merge,features = c('Pdgfa','App','Tgfb1'))
DotPlot(All.merge,features = c('Il34','Csf1','Fgf2'))
边栏推荐
- [staff] the direction of the symbol stem and the connecting line (the symbol stem faces | the symbol stem below the third line faces upward | the symbol stem above the third line faces downward | the
- 32, 64, 128 bit system
- 只需简单几步 - 开始玩耍微信小程序
- [JVM] detailed description of the process of creating objects
- Delphi xe10.4 installing alphacontrols15.12
- MVVM and MVC
- 使用 useDeferredValue 进行异步渲染
- What is the principle of bone conduction earphones and who is suitable for bone conduction earphones
- Leetcode question brushing (10) - sequential question brushing 46 to 50
- Verilog 过程赋值 区别 详解
猜你喜欢
使用 useDeferredValue 进行异步渲染
Discussion on related configuration of thread pool
Mmsegmentation series training and reasoning their own data set (3)
Delphi xe10.4 installing alphacontrols15.12
[question 008: what is UV in unity?]
A list of job levels and salaries in common Internet companies. Those who have conditions must enter big factories. The salary is really high
MongoDB非關系型數據庫
小米青年工程师,本来只是去打个酱油
GB/T-2423. XX environmental test documents, including the latest documents
跟着CTF-wiki学pwn——ret2shellcode
随机推荐
SAML2.0 笔记(一)
Qualcomm platform WiFi -- Native crash caused by WiFi
竞争与冒险 毛刺
[staff] diacritical mark (ascending sign | descending sign B | double ascending sign x | double descending sign BB)
PHP notes - use Smarty to set public pages (include, if, else, variable settings)
How does proxy IP participate in the direct battle between web crawlers and anti crawlers
2022-2028 global nano abrasive industry research and trend analysis report
What is the principle of bone conduction earphones and who is suitable for bone conduction earphones
Jointly developed by nailing, the exclusive functions of glory tablet V7 series were officially launched
SAP ui5 beginner tutorial 19 - SAP ui5 data types and complex data binding
Ten minutes will take you in-depth understanding of multithreading - multithreaded teamwork: synchronous control
STM32__05—PWM控制直流电机
A list of job levels and salaries in common Internet companies. Those who have conditions must enter big factories. The salary is really high
Verilog avoid latch
MongoDB非關系型數據庫
Multi threaded query, double efficiency
Pychart creates new projects & loads faster & fonts larger & changes appearance
Qualcomm platform WiFi -- P2P issue (2)
What are the characteristics of common web proxy IP
QT implementation interface jump