当前位置:网站首页>[set theory] binary relationship (definition field | value field | inverse operation | inverse synthesis operation | restriction | image | single root | single value | nature of synthesis operation)
[set theory] binary relationship (definition field | value field | inverse operation | inverse synthesis operation | restriction | image | single root | single value | nature of synthesis operation)
2022-07-03 04:27:00 【Programmer community】
List of articles
- One 、 The domain of the relationship 、 range 、 Domain
- Two 、 The domain of the relationship 、 range 、 Domain Example
- 3、 ... and 、 Inverse operation of relation
- Four 、 Inverse composition operation of relation
- 5、 ... and 、 Relationship constraints
- 6、 ... and 、 Image of relationship
- 7、 ... and 、 Single root
- 8、 ... and 、 Single value
- Nine 、 The nature of composition operation
One 、 The domain of the relationship 、 range 、 Domain
R
R
R Is an arbitrary set
Domain of definition ( Domain ) :
d
o
m
R
=
{
x
∣
∃
y
(
x
R
y
)
}
dom R = \{ x | \exist y (xRy) \}
domR={ x∣∃y(xRy)}
There is
y
y
y ,
x
x
x And
y
y
y Yes
R
R
R Relationship ,
R
R
R A relationship is a collection , The elements in the set are ordered pairs ,
x
R
y
xRy
xRy yes
<
x
,
y
>
<x,y>
<x,y> Ordered pair ;
R
R
R Ordered pairs in , The first element is
x
x
x , The second element is
y
y
y , Then you can put the
x
x
x Put it into the definition field ;
R
R
R The first element of all ordered pairs in the relationship comes out , Form a domain ;
range ( Range ) :
r
a
n
R
=
{
y
∣
∃
y
(
x
R
y
)
}
ran R = \{ y | \exist y (xRy) \}
ranR={ y∣∃y(xRy)}
R
R
R The first element of all ordered pairs in the relationship comes out , Composition range ;
Domain ( Field ) :
f
l
d
R
=
d
o
m
R
∪
r
a
n
R
fld R = dom R \cup ran R
fldR=domR∪ranR
Domain yes Domain of definition and Union of ranges ;
Two 、 The domain of the relationship 、 range 、 Domain Example
1.
R
1
=
{
a
,
b
}
R_1 = \{a, b\}
R1={ a,b}
R
1
R_1
R1 There is no ordered pair in , Therefore, its Domain of definition , The value field is empty , Further its Domain Also empty ;
d
o
m
R
1
=
∅
dom R_1 = \varnothing
domR1=∅
r
a
n
R
1
=
∅
ran R_1 = \varnothing
ranR1=∅
f
l
d
R
1
=
∅
fld R_1 = \varnothing
fldR1=∅
2.
R
2
=
{
a
,
b
,
<
c
,
d
>
,
<
e
,
f
>
}
R_2 = \{ a, b, <c, d> , <e,f> \}
R2={ a,b,<c,d>,<e,f>}
d
o
m
R
2
=
{
c
,
e
}
dom R_2 = \{ c, e \}
domR2={ c,e}
r
a
n
R
2
=
{
d
,
f
}
ran R_2 = \{ d, f \}
ranR2={ d,f}
f
l
d
R
2
=
{
c
,
d
,
e
,
f
}
fld R_2 = \{ c, d, e , f\}
fldR2={ c,d,e,f}
3.
R
3
=
{
<
1
,
2
>
,
<
3
,
4
>
,
<
5
,
6
>
}
R_3 = \{ <1,2>, <3, 4> , <5,6> \}
R3={ <1,2>,<3,4>,<5,6>}
d
o
m
R
3
=
{
1
,
3
,
5
}
dom R_3 = \{ 1, 3, 5 \}
domR3={ 1,3,5}
r
a
n
R
3
=
{
2
,
4
,
6
}
ran R_3 = \{ 2, 4, 6 \}
ranR3={ 2,4,6}
f
l
d
R
3
=
{
1
,
2
,
3
,
4
,
5
,
6
}
fld R_3 = \{ 1, 2, 3, 4,5, 6\}
fldR3={ 1,2,3,4,5,6}
3、 ... and 、 Inverse operation of relation
Any collection
F
,
G
F , G
F,G , The two sets here are relations , The elements in the set are ordered pairs
Inverse operation ( Inverse ) :
F
−
1
=
{
<
x
,
y
>
∣
y
F
x
}
F^{-1} = \{ <x, y> | yFx \}
F−1={ <x,y>∣yFx}
take
F
F
F All elements of the ordered alignment in the relationship , Change direction back and forth , The first element in the ordered alignment becomes the second element , The second element becomes the first element ;
Such as : take
y
F
x
yFx
yFx , yes
<
y
,
x
>
<y, x>
<y,x> Ordered pair , become
<
x
,
y
>
<x, y>
<x,y> Ordered pair ;
Four 、 Inverse composition operation of relation
Reverse order synthesis ( Composite ) :
F
o
G
=
{
<
x
,
y
>
∣
∃
z
(
x
G
z
∧
z
F
y
)
}
FoG = \{ <x, y> | \exist z ( xGz \land zFy ) \}
FoG={ <x,y>∣∃z(xGz∧zFy)}
If Relationship
G
G
G There is
<
x
,
z
>
<x,z>
<x,z> Ordered pair , Relationship
F
F
F There is
<
z
,
y
>
<z, y>
<z,y> Ordered pair , You can get a new ordered pair
<
x
,
y
>
<x,y>
<x,y> , The new order pair is Relationship
F
F
F and Relationship
G
G
G Synthesis In the result of the calculation ;
This synthesis is Reverse order synthesis , First use
F
o
G
FoG
FoG In the back
G
G
G The order of the relationship is right , And then use The former
F
F
F Ordered pairs in ;
Reverse order synthesis The corresponding is sequential synthesis , Generally, reverse order synthesis is used , Its nature is convenient to use ;
5、 ... and 、 Relationship constraints
For any set
F
,
A
F, A
F,A , Can define
F
F
F Assemble in
A
A
A On the assembly Limit ( Restriction ) :
F
↾
A
=
{
<
x
,
y
>
∣
x
F
y
∧
x
∈
A
}
F \upharpoonright A = \{ <x, y> | xFy \land x \in A \}
F↾A={ <x,y>∣xFy∧x∈A}
analysis :
F
F
F A set is a relation , Its element is Ordered pair
A
A
A Sets are ordinary sets , Its elements are simply single elements ;
F
F
F In the collection Ordered pair In the elements , If Ordered right First element stay
A
A
A Collection , Then pick out this ordered pair , Put it in a new collection , This new set is called
F
F
F Assemble in
A
A
A On the assembly Limit , Write it down as
F
↾
A
F \upharpoonright A
F↾A ;
Above Limit ( Restriction ) It's a limitation The first element in an ordered pair ;
If you want to Limit the second element , take
F
F
F Orderly aligned in a set The second element belongs to
A
A
A Select the ordered pairs of the set of , Can be
F
F
F Inverse the relation , then seek
F
−
1
F^{-1}
F−1 The limitation of ;
The result of restriction is still a relationship , The elements in its set are ordered pairs ;
6、 ... and 、 Image of relationship
For any set
F
,
A
F, A
F,A , Can define
F
F
F Assemble in
A
A
A On the assembly image ( Image ) :
F
(
A
)
=
r
a
n
(
F
↾
A
)
F(A) = ran(F \upharpoonright A)
F(A)=ran(F↾A)
namely ,
F
F
F stay
A
A
A On the assembly Limit ( Restriction ) Range of values ;
Another way to express :
F
[
A
]
=
{
y
∣
∃
x
(
x
∈
A
)
∧
x
F
y
}
F [A] = \{ y | \exist x ( x \in A ) \land xFy \}
F[A]={ y∣∃x(x∈A)∧xFy}
take
F
F
F Medium Ordered pair Pick out , Then pick out the first element of the ordered alignment in
A
A
A Ordered pairs in sets , Put the above Pick out the second element of the ordered pair , Put it into a new set , This set is yes
F
F
F stay
A
A
A On the assembly image ;
image The result is not a relationship , It is Meeting specific requirements Ordered pair set A set consisting of the second element of an ordered pair in ;
7、 ... and 、 Single root
Any collection
F
F
F , Single root ( Single Rooted ) Definition :
F
F
F It's single
⇔
\Leftrightarrow
⇔
∀
y
(
y
∈
r
a
n
F
→
∃
!
x
(
x
∈
d
o
m
F
∧
x
F
y
)
)
\forall y ( y \in ran F \to \exist ! x( x \in domF \land xFy ) )
∀y(y∈ranF→∃!x(x∈domF∧xFy))
⇔
\Leftrightarrow
⇔
(
∀
y
∈
r
a
n
F
)
(
∃
!
x
∈
d
o
m
F
)
(
x
F
y
)
( \forall y \in ran F )( \exist ! x \in domF )(xFy)
(∀y∈ranF)(∃!x∈domF)(xFy)
Any one of them
y
y
y ,
y
y
y Is the element in the value range of the ordered alignment , Orderly alignment and
y
y
y Corresponding value
x
x
x Elements , namely
<
x
,
y
>
<x, y>
<x,y> Form an ordered pair , The
x
x
x Exist and unique ;
Ordered pair
<
x
,
y
>
<x, y>
<x,y> Each of them
y
y
y All correspond to different
x
x
x
Some predicate formula descriptions :
∃
!
\exist !
∃! Express Only exist ;
∀
x
(
(
x
∈
A
→
B
(
x
)
)
\forall x ( (x \in A \to B(x) )
∀x((x∈A→B(x)) Can be abbreviated to
(
∀
x
∈
A
)
B
(
x
)
(\forall x \in A)B(x)
(∀x∈A)B(x)
∃
x
(
x
∈
A
∧
B
(
x
)
)
\exist x ( x \in A \land B(x) )
∃x(x∈A∧B(x)) Can be abbreviated to
(
∃
x
∈
A
)
B
(
x
)
(\exist x \in A)B(x)
(∃x∈A)B(x)
8、 ... and 、 Single value
Any collection
F
F
F , Single value ( Single Value ) Definition :
F
F
F It is single valued
⇔
\Leftrightarrow
⇔
∀
x
(
x
∈
d
o
m
F
→
∃
!
y
(
y
∈
r
a
n
F
∧
x
F
y
)
)
\forall x ( x \in dom F \to \exist ! y( y \in ranF \land xFy ) )
∀x(x∈domF→∃!y(y∈ranF∧xFy))
⇔
\Leftrightarrow
⇔
(
∀
x
∈
d
o
m
F
)
(
∃
!
y
∈
r
a
n
F
)
(
x
F
y
)
( \forall x \in dom F )( \exist ! y \in ranF )(xFy)
(∀x∈domF)(∃!y∈ranF)(xFy)
Any one of them
x
x
x ,
x
x
x Is the definition field in the ordered pair, and the elements in the field , Orderly alignment and
x
x
x Corresponding value
y
y
y Elements , namely
<
x
,
y
>
<x, y>
<x,y> Form an ordered pair , The
y
y
y Exist and unique ;
Ordered pair
<
x
,
y
>
<x, y>
<x,y> Each of them
x
x
x All correspond to different
y
y
y
Nine 、 The nature of composition operation
R
1
,
R
2
,
R
3
R_1, R_2, R_3
R1,R2,R3 It's three sets , It has the following properties :
(
R
1
o
R
2
)
o
R
3
=
(
R
1
o
(
R
2
o
R
3
)
)
(R_1 o R_2) o R_3 = (R_1 o ( R_2 o R_3 ))
(R1oR2)oR3=(R1o(R2oR3))
F
,
G
F, G
F,G It's two sets , It has the following properties :
(
F
o
G
)
−
1
=
G
−
1
o
F
−
1
(F o G)^{-1} = G^{-1} o F^{-1}
(FoG)−1=G−1oF−1
Inverse of composition operation be equal to The composition of the inverse of two sets ;
边栏推荐
- Analysis of the reason why the server cannot connect remotely
- [Chongqing Guangdong education] reference materials for design and a better life of Zhongyuan Institute of science and technology
- [untitled] 2022 safety production supervisor examination question bank and simulated safety production supervisor examination questions
- MySQL create table
- Classes in TS
- Human resource management system based on JSP
- 一名外包仔的2022年中总结
- 2022-02-12 (338. Bit count)
- 重绘和回流
- X-ray normal based contour rendering
猜你喜欢
[NLP]—sparse neural network最新工作简述
Design and implementation of JSP logistics center storage information management system
Data Lake three swordsmen -- comparative analysis of delta, Hudi and iceberg
Joint set search: merge intervals and ask whether two numbers are in the same set
FISCO bcos zero knowledge proof Fiat Shamir instance source code
使用BENCHMARKSQL工具对KingbaseES预热数据时执行:select sys_prewarm(‘NDX_OORDER_2 ‘)报错
C language series - Section 3 - functions
Basic use of continuous integration server Jenkins
智能合约安全审计公司选型分析和审计报告资源下载---国内篇
Solve BP Chinese garbled code
随机推荐
P35-P41 fourth_ context
2022-02-14 (394. String decoding)
220214c language learning diary
使用BENCHMARKSQL工具对KingbaseES预热数据时执行:select sys_prewarm(‘NDX_OORDER_2 ‘)报错
Use the benchmarksql tool to perform a data prompt on kingbases. The jdbc driver cannot be found
Arthas watch grabs a field / attribute of the input parameter
Redis persistence principle
Function introduction of member points mall system
Taking two column waterfall flow as an example, how should we build an array of each column
[Thesis Writing] how to write the overall design of JSP tourism network
The latest activation free version of Omni toolbox
[set theory] Cartesian product (concept of Cartesian product | examples of Cartesian product | properties of Cartesian product | non commutativity | non associativity | distribution law | ordered pair
Asp access teaching management system design finished product
540. Single element in ordered array
arthas watch 抓取入参的某个字段/属性
GFS分布式文件系统(光是遇见已经很美好了)
[set theory] set concept and relationship (set family | set family examples | multiple sets)
Mila, University of Ottawa | molecular geometry pre training with Se (3) invariant denoising distance matching
Prefix and (continuously updated)
Square root of X