当前位置:网站首页>sqoop ETL tool

sqoop ETL tool

2022-08-04 02:35:00 boy picking up gold

目录

概述

1、sqoop的安装

2、sqoop的使用 

3、MySQL数据导入到HDFS中 

1、不指定HDFS目录导入

2、指定HDFS目录导入 

3、导入到HDFS指定目录,并指定字段之间的分隔符

4、--where,通过条件过滤MySQL,再导入hdfs

 5、通过SQLfilter import toHDFS中

6、MySQLImport of incremental data toHDFS中

The first incremental import is implemented using the options above

第二种、Incremental import passed--where条件来实现

7、HDFS中数据导入到MYSQL中 

 4、MySQL数据导入到hive中

1、导入到hive指定表(自己建表)

​编辑

 2、hive不创建表,sqoop自动创建

 5、MySQL中的数据导入到hbase中

1、MySQL中的数据导入到hbase

 2、hbase中的数据导出到MySQL


概述

- Sqoop是apache旗下的一款 ”Hadoop和关系数据库之间传输数据”的工具

  导入数据:将MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统

  导出数据:从Hadoop的文件系统中导出数据到关系数据库(mysql中)

1、sqoop的安装

sqoop安装包

1、上传并解压

  • Upload the downloaded installation package to ==node03==服务器的/kkb/soft路径下,然后进行解压

cd /kkb/soft/


tar -zxf sqoop-1.4.6-cdh5.14.2.tar.gz -C /kkb/install/ 

2、修改配置文件

  • 更改sqoop的配置文件

 cd /kkb/install/sqoop-1.4.6-cdh5.14.2/conf


mv sqoop-env-template.sh sqoop-env.sh


vim sqoop-env.sh

#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=/kkb/install/hadoop-2.6.0-cdh5.14.2

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/kkb/install/hadoop-2.6.0-cdh5.14.2

#set the path to where bin/hbase is available
export HBASE_HOME=/kkb/install/hbase-1.2.0-cdh5.14.2

#Set the path to where bin/hive is available
export HIVE_HOME=/kkb/install/hive-1.1.0-cdh5.14.2

3、sqoopTwo additional dependencies are requiredjar包,Put two of the datajar包添加到sqoop的lib目录下

4、配置sqoop的环境变量

sudo vim /etc/profile

export SQOOP_HOME=/kkb/install/sqoop-1.4.6-cdh5.14.2


export PATH=:$SQOOP_HOME/bin:$PATH 

source /etc/profile 

5、Because to be involvedhive数据导入导出,所以要引入hive的lib下面的包 

将我们mysql表当中的数据直接导入到hive表中的话,我们需要将hive的一个叫做hive-exec-1.1.0-cdh5.14.0.jar的jar包拷贝到sqoop的lib目录下

cp /kkb/install/hive-1.1.0-cdh5.14.2/lib/hive-exec-1.1.0-cdh5.14.2.jar /kkb/install/sqoop-1.4.6-cdh5.14.2/lib/

cp /kkb/install/hive-1.1.0-cdh5.14.2/lib/hive-shims*  /kkb/install/sqoop-1.4.6-cdh5.14.2/lib/

2、sqoop的使用 

1、查看sqoop帮助文档

sqoop list-databases --help

2、查看MySQL中所有的数据库

sqoop list-databases --connect jdbc:mysql://node03:3306/ --username root --password 123456 

 

 3、查看hiveAll tables below the database

sqoop list-tables --connect jdbc:mysql://node03:3306/hive --username root --password 123456

准备表数据

  • 在mysql中有一个库userdb中三个表:emp, emp_add和emp_conn

  • 表emp:

idnamedegsalarydept
1201gopalmanager50,000TP
1202manishaProof reader50,000TP
1203khalilphp dev30,000AC
1204prasanthphp dev30,000AC
1205kranthiadmin20,000TP
  • 表emp_add:

idhnostreetcity
1201288Avgirijublee
1202108Iaocsec-bad
1203144Zpguttahyd
120478Bold citysec-bad
1205720Xhitecsec-bad
  • 表emp_conn:

idphnoemail
12012356742[email protected]
12021661663[email protected]
12038887776[email protected]
12049988774[email protected]
12051231231[email protected]
  • 建表,And the statement to insert data is as follows:

 

CREATE DATABASE /*!32312 IF NOT EXISTS*/`userdb` /*!40100 DEFAULT CHARACTER SET utf8 */;

USE `userdb`;

DROP TABLE IF EXISTS `emp`;

CREATE TABLE `emp` (
  `id` INT(11) DEFAULT NULL,
  `name` VARCHAR(100) DEFAULT NULL,
  `deg` VARCHAR(100) DEFAULT NULL,
  `salary` INT(11) DEFAULT NULL,
  `dept` VARCHAR(10) DEFAULT NULL,
  `create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=latin1;

INSERT  INTO `emp`(`id`,`name`,`deg`,`salary`,`dept`) VALUES (1201,'gopal','manager',50000,'TP'),(1202,'manisha','Proof reader',50000,'TP'),(1203,'khalil','php dev',30000,'AC'),(1204,'prasanth','php dev',30000,'AC'),(1205,'kranthi','admin',20000,'TP');

DROP TABLE IF EXISTS `emp_add`;

CREATE TABLE `emp_add` (
  `id` INT(11) DEFAULT NULL,
  `hno` VARCHAR(100) DEFAULT NULL,
  `street` VARCHAR(100) DEFAULT NULL,
  `city` VARCHAR(100) DEFAULT NULL,
  `create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=latin1;

INSERT  INTO `emp_add`(`id`,`hno`,`street`,`city`) VALUES (1201,'288A','vgiri','jublee'),(1202,'108I','aoc','sec-bad'),(1203,'144Z','pgutta','hyd'),(1204,'78B','old city','sec-bad'),(1205,'720X','hitec','sec-bad');

DROP TABLE IF EXISTS `emp_conn`;
CREATE TABLE `emp_conn` (
  `id` INT(100) DEFAULT NULL,
  `phno` VARCHAR(100) DEFAULT NULL,
  `email` VARCHAR(100) DEFAULT NULL,
  `create_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `update_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `is_delete` BIGINT(20) DEFAULT '1'
) ENGINE=INNODB DEFAULT CHARSET=latin1;

INSERT  INTO `emp_conn`(`id`,`phno`,`email`) VALUES (1201,'2356742','[email protected]'),(1202,'1661663','[email protected]'),(1203,'8887776','[email protected]'),(1204,'9988774','[email protected]'),(1205,'1231231','[email protected]');

3、MySQL数据导入到HDFS中 

1、不指定HDFS目录导入

  • 使用sqoop命令导入、before exporting data,要先启动hadoop集群

  • 下面的命令用于从MySQL数据库服务器中的emp表导入HDFS.

sqoop import --connect jdbc:mysql://node03:3306/userdb --password 123456 --username root --table emp --m 1 

hdfs dfs -ls /user/root/emp 

2、指定HDFS目录导入 

  • 在导入表数据到HDFS使用Sqoop导入工具,我们可以指定目标目录.

  • 使用参数 --target-dir来指定导出目的地,

  • 使用参数--delete-target-dir来判断导出目录是否存在,如果存在就删掉

sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --delete-target-dir --table emp --target-dir /sqoop/emp --m 1

 

查看数据 

hdfs dfs -text /sqoop/emp/part-m-00000 

 它会用逗号(,)分隔emp_add表的数据和字段.

3、导入到HDFS指定目录,并指定字段之间的分隔符

指定分隔符

 --fields-terminated-by '\t'

sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --delete-target-dir --table emp --target-dir /sqoop/emp2 --m 1 --fields-terminated-by '\t' 

查看导出的数据

hdfs dfs -text /sqoop/emp2/part-m-00000 

 

4、--where,通过条件过滤MySQL,再导入hdfs

  • 我们可以导入表的使用Sqoop导入工具,"where"子句的一个子集.它执行在各自的数据库服务器相应的SQL查询,并将结果存储在HDFS的目标目录.

  • where子句的语法如下.

--where <condition> 

按照条件进行查找,通过--where参数来查找表emp_add当中city字段的值为sec-bad的所有数据导入到hdfs上面去

sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root --password 123456 --table emp_add \
--target-dir /sqoop/emp_add -m 1 --delete-target-dir \
--where "city = 'sec-bad'"

查看导出的数据 

 hdfs dfs -text /sqoop/emp_add/part-m-00000

 

 5、通过SQLfilter import toHDFS中

我们还可以通过 –query参数来指定我们的sql语句,通过sql语句来过滤我们的数据进行导入

sqoop import \
--connect jdbc:mysql://node03:3306/userdb --username root --password 123456 \
--delete-target-dir -m 1 \
--query 'select phno from emp_conn where 1=1 and  $CONDITIONS' \
--target-dir /sqoop/emp_conn

 hdfs dfs -text /sqoop/emp_conn/part*

注意:

使用sql语句来进行查找是不能加参数--table

并且必须要添加where条件,

并且where条件后面必须带一个$CONDITIONS 这个字符串,

并且这个sql语句必须用单引号,不能用双引号

 

6、MySQLImport of incremental data toHDFS中

  • 在实际工作当中,数据的导入,很多时候都是只需要导入增量数据即可,It is not necessary to import all the data in the table tohive或者hdfs当中去,There will definitely be duplicate data situations,Therefore, we generally choose some fields for incremental import,To support incremental imports,sqoopIt also takes us into account and supports incremental import data

  • 增量导入是仅导入新添加的表中的行的技术.

  • 它需要添加‘incremental’, ‘check-column’, 和 ‘last-value’选项来执行增量导入.

  • 下面的语法用于Sqoop导入命令增量选项.

 --incremental <mode>  


--check-column <column name>  


--last value <last check column value> 

The first incremental import is implemented using the options above

  • 导入emp表当中id大于1202的所有数据

  • 注意:增量导入的时候,一定不能加参数--delete-target-dir否则会报错

sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--incremental append \
--check-column id \
--last-value 1202 \
-m 1 \
--target-dir /sqoop/increment
  • 查看数据内容

hdfs dfs -text /sqoop/increment/part*

 

第二种、Incremental import passed--where条件来实现

  • 或者我们使用--whereThe selection of control data will be more precise

sqoop import \
--connect jdbc:mysql://node03:3306/userdb \
--username root \
--password 123456 \
--table emp \
--incremental append \
--where "create_time > '2018-06-17 00:00:00' and is_delete='1' and create_time < '2018-06-17 23:59:59'" \
--target-dir /sqoop/incement4\
--check-column id \
--m 1 

 

7、HDFS中数据导入到MYSQL中 

sqoop export 为导出 导出到MySQL

sqoop import为导入,MySQL中导入

  sqoop export \
--connect jdbc:mysql://node03:3306/userdb \
--username root --password 123456 \
--table emp_out \
--export-dir /sqoop/emp \
--input-fields-terminated-by "," 

导入前

 导入后

 

 

 

 

 4、MySQL数据导入到hive中

1、导入到hive指定表(自己建表)

1、在hive中创建一个emp_hive表,

hive (default)> create database sqooptohive;
hive (default)> use sqooptohive;
hive (sqooptohive)> create external table emp_hive(id int,name string,deg string,salary int ,dept string) row format delimited fields terminated by '\001';

 2、MySQL导出数据到emp_hive表中

sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --table emp --fields-terminated-by '\001' --hive-import --hive-table sqooptohive.emp_hive --hive-overwrite --delete-target-dir --m 1

3、在hive中查看数据 

select * from emp_hive;

 2、hive不创建表,sqoop自动创建

但是要指定hive数据库,This automatically creates the table,hiveCreate with the table name and MySQL的一致

--hive-database sqooptohive;

完整语句如下 

sqoop import --connect jdbc:mysql://node03:3306/userdb --username root --password 123456 --table emp_conn --hive-import -m 1 --hive-database sqooptohive;

 

 5、MySQL中的数据导入到hbase中

1、MySQL中的数据导入到hbase

1、MySQLCreate display data in

CREATE DATABASE IF NOT EXISTS library;
USE library;
CREATE TABLE book(
id INT(4) PRIMARY KEY NOT NULL AUTO_INCREMENT, 
NAME VARCHAR(255) NOT NULL, 
price VARCHAR(255) NOT NULL);

INSERT INTO book(NAME, price) VALUES('Lie Sporting', '30'); 
INSERT INTO book (NAME, price) VALUES('Pride & Prejudice', '70'); 
INSERT INTO book (NAME, price) VALUES('Fall of Giants', '50');  

2、执行以下命令,将mysqlThe data in the table is imported intoHBase当中去  

指定hbase中的行键rowkey,列族column-family等

sqoop import \
--connect jdbc:mysql://node03:3306/library \
--username root \
--password 123456 \
--table book \
--columns "id,name,price" \
--column-family "info" \
--hbase-create-table \
--hbase-row-key "id" \
--hbase-table "hbase_book" \
--num-mappers 1 \
--split-by id

scan 'hbase_book' 

 

 2、hbase中的数据导出到MySQL

sqoopWe will not support directlyHBasedata export,So we can export through the following transformation

Hbase→hive外部表→hive内部表→通过sqoop→mysql逻辑,

1、创建外部hive表与hbase映射

2、创建hive内部表,Import the build external table tohive内部表

3、Export the data of the internal table toMySQL中

先将MySQL中的bookThe table is emptied for backup

use library;
TRUNCATE TABLE book;

进入hive客户端,创建hive外部表,映射hbase当中的hbase_book表  

 CREATE EXTERNAL TABLE course.hbase2mysql (id int,name string,price int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" =
":key,info:name, info:price"
)
TBLPROPERTIES( "hbase.table.name" = "hbase_book",
"hbase.mapred.output.outputtable" = "hbase2mysql");

 进入hive客户端,执行以下命令,创建hive内部表,and insert data from the external table intohivefrom the internal table

CREATE TABLE course.hbase2mysqlin(id int,name string,price int);

insert overwrite table course.hbase2mysqlin select * from course.hbase2mysql; 

将hive中的数据导入到MySQL中 

sqoop export --connect jdbc:mysql://node03:3306/library --username root --password 123456 --table book --export-dir /user/hive/warehouse/course.db/hbase2mysqlin --input-fields-terminated-by '\001' --input-null-string '\\N' --input-null-non-string '\\N'; 

 

 

原网站

版权声明
本文为[boy picking up gold]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040222388070.html